Skip to main content

Advertisement

Log in

Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Scientists and policymakers increasingly recognize that headwater regions contain numerous temporary streams that expand and contract in length, but accurately mapping and modeling dynamic stream networks remain a challenge. Flow intermittency sensors offer a relatively new approach to characterize wet stream length dynamics at high spatial and temporal resolutions. We installed 51 flow intermittency sensors at an average spacing of 40 m along the stream network of a high-relief, headwater catchment (33 ha) in the Valley and Ridge of southwest Virginia. The sensors recorded the presence or absence of water every 15 min for 10 months. Calculations of the wet network proportion from sensor data aligned with those from field measurements, confirming the efficacy of flow intermittency sensors. The fine temporal scale of the sensor data showed hysteresis in wet stream length: the wet network proportion was up to 50% greater on the rising limb of storm events than on the falling limb for dry antecedent conditions, at times with a delay of several hours between the maximum wet proportion and peak runoff at the catchment outlet. Less stream length hysteresis was evident for larger storms with higher event and antecedent precipitation that resulted in peak runoff > 15 mm/day. To assess spatial controls on stream wetting and drying, we performed a correlation analysis between flow duration at the sensor locations and common topographic metrics used in stream network modeling. Topography did not fully explain spatial variation in flow duration along the stream network. However, entrenched valleys had longer periods of flow on the rising limbs of events than unconfined reaches. In addition, large upslope contributing areas corresponded to higher flow duration on falling limbs. Future applications that explore the magnitude and drivers of stream length variability may provide further insights into solute and runoff generation processes in headwater regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., et al. (2014). Why should we care about temporary waterways? Science, 343(6175), 1080–1081.

    Article  Google Scholar 

  • Adams, H. S., & Stephenson, S. L. (1983). A description of the vegetation on the south slopes of Peters Mountain, southwestern Virginia. Bulletin of the Torrey Botanical Club, 110(1), 18–22.

    Article  Google Scholar 

  • Arismendi, I., Dunham, J. B., Heck, M. P., Schultz, L. D., & Hockman-Wert, D. (2017). A statistical method to predict flow permanence in dryland streams from time series of stream temperature. Water, 9(12), 946.

    Article  Google Scholar 

  • Arnborg, L., Walker, H. J., & Peippo, J. (1967). Suspended load in the Colville river, Alaska, 1962. Geografiska Annaler: Series A, Physical Geography, 49(2–4), 131–144.

    Article  Google Scholar 

  • Batlle-Aguilar, J., & Cook, P. G. (2012). Transient infiltration from ephemeral streams: a field experiment at the reach scale. Water Resources Research, 48(11), W11518. https://doi.org/10.1029/2012WR012009.

  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24(1), 43–69.

    Article  Google Scholar 

  • Bhamjee, R., & Lindsay, J. B. (2011). Ephemeral stream sensor design using state loggers. Hydrology and Earth System Sciences, 15(3), 1009–1021.

    Article  Google Scholar 

  • Bishop, K., Buffam, I., Erlandsson, M., Fölster, J., Laudon, H., Seibert, J., & Temnerud, J. (2008). Aqua Incognita: the unknown headwaters. Hydrological Processes, 22(8), 1239–1242.

    Article  Google Scholar 

  • Blasch, K. W., Ferré, T., Christensen, A. H., & Hoffmann, J. P. (2002). New field method to determine streamflow timing using electrical resistance sensors. Vadose Zone Journal, 1(2), 289–299.

    Article  Google Scholar 

  • Blasch, K. W., Ferré, T., Hoffmann, J. P., & Fleming, J. B. (2006). Relative contributions of transient and steady state infiltration during ephemeral streamflow. Water Resources Research, 42(8), W08405. https://doi.org/10.1029/2005WR004049.

  • Blyth, K., & Rodda, J. C. (1973). A stream length study. Water Resources Research, 9(5), 1454–1461.

    Article  Google Scholar 

  • Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29(1), 59–81.

    Article  Google Scholar 

  • Buttle, J. M., Boon, S., Peters, D. L., Spence, C., van Meerveld, H. J., & Whitfield, P. H. (2012). An overview of temporary stream hydrology in Canada. Canadian Water Resources Journal, 37(4), 279–310.

    Article  Google Scholar 

  • Calkins, D., & Dunne, T. (1970). A salt tracing method for measuring channel velocities in small mountain streams. Journal of Hydrology, 11(4), 379–392.

    Article  Google Scholar 

  • Camporese, M., Penna, D., Borga, M., & Paniconi, C. (2014). A field and modeling study of nonlinear storage-discharge dynamics for an Alpine headwater catchment. Water Resources Research, 50(2), 806–822.

    Article  Google Scholar 

  • Chapin, T. P., Todd, A. S., & Zeigler, M. P. (2014). Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring. Water Resources Research, 50(8), 6542–6548.

    Article  Google Scholar 

  • Constantz, J., Stonestorm, D., Stewart, A. E., Niswonger, R., & Smith, T. R. (2001). Analysis of streambed temperatures in ephemeral channels to determine streamflow frequency and duration. Water Resources Research, 37(2), 317–328.

    Article  Google Scholar 

  • Creed, I. F., Lane, C. R., Serran, J. N., Alexander, L. C., Basu, N. B., Calhoun, A. J., et al. (2017). Enhancing protection for vulnerable waters. Nature Geoscience, 10(11), 809–815.

    Article  CAS  Google Scholar 

  • Creggar, W. H., Hudson, H. C., & Porter, H. C. (1985). Soil survey of Montgomery County, Virginia. U.S. Washington D.C: Department of Agriculture Soil Conservation Service 158 pp.

    Google Scholar 

  • Datry, T., Larned, S. T., & Tockner, K. (2014). Intermittent rivers: a challenge for freshwater ecology. BioScience, 64(3), 229–235.

    Article  Google Scholar 

  • Day, D. G. (1978). Drainage density changes during rainfall. Earth Surface Processes and Landforms, 3(3), 319–326.

    Article  Google Scholar 

  • Day, D. G. (1980). Lithologic controls of drainage density: a study of six small rural catchments in New England, NSW. Catena, 7(4), 339–351.

    Article  Google Scholar 

  • Downing, J. A., Cole, J. J., Duarte, C. M., Middelburg, J. J., Melack, J. M., Prairie, Y. T., et al. (2012). Global abundance and size distribution of streams and rivers. Inland Waters, 2(4), 229–236.

    Article  Google Scholar 

  • Elmore, A. J., Julian, J. P., Guinn, S. M., & Fitzpatrick, M. C. (2013). Potential stream density in mid-Atlantic US watersheds. PLoS One, 8(8), e74819.

    Article  CAS  Google Scholar 

  • Evans, C., & Davies, T. D. (1998). Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resources Research, 34(1), 129–137.

    Article  CAS  Google Scholar 

  • Fritz, K. M., Hagenbuch, E., D’Amico, E., Reif, M., Wigington, P. J., Leibowitz, S. G., et al. (2013). Comparing the extent and permanence of headwater streams from two field surveys to values from hydrographic databases and maps. Journal of the American Water Resources Association, 49(4), 867–882.

    Article  Google Scholar 

  • Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrological Processes, 28(23), 5791–5803.

    Article  Google Scholar 

  • González-Ferreras, A. M., & Barquín, J. (2017). Mapping the temporary and perennial character of whole river networks. Water Resources Research, 53(8), 6709–6724.

    Article  Google Scholar 

  • Goulsbra, C. S., Lindsay, J. B., & Evans, M. G. (2009). A new approach to the application of electrical resistance sensors to measuring the onset of ephemeral streamflow in wetland environments. Water Resources Research, 45(9), W09501. https://doi.org/10.1029/2009WR007789

  • Goulsbra, C., Evans, M., & Lindsay, J. (2014). Temporary streams in a peatland catchment: pattern, timing, and controls on stream network expansion and contraction. Earth Surface Processes and Landforms, 39(6), 790–803.

    Article  Google Scholar 

  • Gregory, K. J., & Walling, D. E. (1968). The variation of drainage density within a catchment. Hydrological Sciences Journal, 13(2), 61–68.

    Google Scholar 

  • Guisan, A., Weiss, S. B., & Weiss, A. D. (1999). GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143(1), 107–122.

    Article  Google Scholar 

  • Gungle, B. (2006). Timing and duration of flow in ephemeral streams of the Sierra Vista subwatershed of the Upper San Pedro Basin, Cochise County, Southeastern Arizona. U.S. Geological Survey Scientific Investigations Report 2005-5190. U.S. Department of the Interior.

  • Haines, W. B. (1930). Studies in the physical properties of soil: V. The hysteresis effect in capillary properties, and the modes of moisture associated therewith. The Journal of Agricultural Science, 20(1), 97–116.

    Article  CAS  Google Scholar 

  • Haught, D. R. W., & Meerveld, H. J. (2011). Spatial variation in transient water table responses: differences between an upper and lower hillslope zone. Hydrological Processes, 25(25), 3866–3877.

    Article  Google Scholar 

  • Hooshyar, M., Kim, S., Wang, D., & Medeiros, S. C. (2015). Wet channel network extraction by integrating LiDAR intensity and elevation data. Water Resources Research, 51(12), 10029–10046.

    Article  Google Scholar 

  • Jaeger, K. L., & Olden, J. D. (2012). Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Research and Applications, 28(10), 1843–1852.

    Article  Google Scholar 

  • Jaeger, K. L., Montgomery, D. R., & Bolton, S. M. (2007). Channel and perennial flow initiation in headwater streams: management implications of variability in source-area size. Environmental Management, 40(5), 775.

    Article  Google Scholar 

  • Jaeger, K. L., Olden, J. D., & Pelland, N. A. (2014). Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences, 111(38), 13894–13899.

    Article  CAS  Google Scholar 

  • Jaeger, K. L., Sando, R., McShane, R. R., Dunham, J., Hockman-Wert, D., Kaiser, K. E., et al. (2018). Probability of Streamflow Permanence Model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific northwest. Journal of Hydrology X, 100005. https://doi.org/10.1016/j.hydroa.2018.100005.

    Article  Google Scholar 

  • Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K. E., & Marshall, L. A. (2009). Hydrologic connectivity between landscapes and streams: transferring reach- and plot- scale understanding to the catchment scale. Water Resources Research, 45(4), W04428. https://doi.org/10.1029/2008WR007225.

  • Jensen, C. K., McGuire, K. J., & Prince, P. S. (2017). Headwater stream length dynamics across four physiographic provinces of the Appalachian Highlands. Hydrological Processes, 31(19), 3350–3363.

    Article  Google Scholar 

  • Jensen, C. K., McGuire, K. J., Shao, Y., & Dolloff, C. A. (2018). Modeling headwater stream networks across multiple flow conditions in the Appalachian Highlands. Earth Surface Processes and Landforms, 43(13), 2762–2778.

    Article  Google Scholar 

  • Larned, S. T., Datry, T., Arscott, D. B., & Tockner, K. (2010). Emerging concepts in temporary- river ecology. Freshwater Biology, 55(4), 717–738.

    Article  Google Scholar 

  • Lawler, D. M., Petts, G. E., Foster, I. D., & Harper, S. (2006). Turbidity dynamics during spring storm events in an urban headwater river system: the Upper Tame, West Midlands, UK. Science of the Total Environment, 360(1–3), 109–126.

    Article  CAS  Google Scholar 

  • McGlynn, B. L., McDonnell, J. J., Seibert, J., & Kendall, C. (2004). Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resources Research, 40(7), W07504. https://doi.org/10.1029/2003WR002494.

  • Morgan, R. P. C. (1972). Observations on factors affecting the behaviour of a first-order stream. Transactions of the Institute of British Geographers, 56, 171–185.

    Article  Google Scholar 

  • Mosley, M. P. (1982). Subsurface flow velocities through selected forest soils, South Island, New Zealand. Journal of Hydrology, 55(1–4), 65–92.

    Article  Google Scholar 

  • Myrabø, S. (1997). Temporal and spatial scale of response area and groundwater variation in till. Hydrological Processes, 11(14), 1861–1880.

    Article  Google Scholar 

  • Nadeau, T. L., & Rains, M. C. (2007). Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. Journal of the American Water Resources Association, 43(1), 118–133.

    Article  Google Scholar 

  • Nilsen, E. T. (1986). Quantitative phenology and leaf survivorship of Rhododendron maximum in contrasting irradiance environments of the southern Appalachian mountains. American Journal of Botany, 73(6), 822–831.

    Article  Google Scholar 

  • Niswonger, R. G., Prudic, D. E., Fogg, G. E., Stonestrom, D. A., & Buckland, E. M. (2008). Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams. Water Resources Research, 44(5), W05418. https://doi.org/10.1029/2007WR006626.

  • Peirce, S. E., & Lindsay, J. B. (2015). Characterizing ephemeral streams in a southern Ontario watershed using electrical resistance sensors. Hydrological Processes, 29(1), 103–111.

    Article  Google Scholar 

  • Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., & Dalla Fontana, G. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15(3), 689–702.

    Article  Google Scholar 

  • Płaczkowska, E., Górnik, M., Mocior, E., Peek, B., Potoniec, P., Rzonca, B., & Siwek, J. (2015). Spatial distribution of channel heads in the Polish Flysch Carpathians. Catena, 127, 240–249.

    Article  Google Scholar 

  • Prowse, C. W. (1984). Some thoughts on lag and hysteresis. Area, 16(1), 17–23.

    Google Scholar 

  • Roberts, M. C., & Archibold, O. W. (1978). Variation of drainage density in a small British Columbia watershed. Journal of the American Water Resources Association, 14(2), 470–476.

    Article  Google Scholar 

  • Roberts, M. C., & Klingeman, P. C. (1972). The relationship of drainage net fluctuation and discharge. Proceedings of the 22nd International Geographical Congress, Canada, 181–91.

  • Roelens, J., Rosier, I., Dondeyne, S., Van Orshoven, J., & Diels, J. (2018). Extracting drainage networks and their connectivity using Lidar data. Hydrological Processes, 32, 1026–1037.

    Article  Google Scholar 

  • Roth, D. L., Finnegan, N. J., Brodsky, E. E., Cook, K. L., Stark, C. P., & Wang, H. W. (2014). Migration of a coarse fluvial sediment pulse detected by hysteresis in bedload generated seismic waves. Earth and Planetary Science Letters, 404, 144–153.

    Article  CAS  Google Scholar 

  • Russell, P. P., Gale, S. M., Muñoz, B., Dorney, J. R., & Rubino, M. J. (2015). A spatially explicit model for mapping headwater streams. Journal of the American Water Resources Association, 51, 226–239.

    Article  Google Scholar 

  • Schneider, A., Jost, A., Coulon, C., Silvestre, M., Théry, S., & Ducharne, A. (2017). Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophysical Research Letters, 44(6), 2773–2781.

    Article  Google Scholar 

  • Seibert, J., & McGlynn, B. L. (2007). A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research, 43(4), W04501. https://doi.org/10.1029/2006WR005128.

  • Shaw, S. B. (2016). Investigating the linkage between streamflow recession rates and channel network contraction in a mesoscale catchment in New York state. Hydrological Processes, 30(3), 479–492.

    Article  Google Scholar 

  • Siwek, J., Siwek, J. P., & Żelazny, M. (2013). Environmental and land use factors affecting phosphate hysteresis patterns of stream water during flood events (Carpathian Foothills, Poland). Hydrological Processes, 27(25), 3674–3684.

    Article  Google Scholar 

  • Skoulikidis, N. T., Sabater, S., Datry, T., Morais, M. M., Buffagni, A., Dörflinger, G., et al. (2017). Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management. Science of the Total Environment, 577, 1–18.

    Article  CAS  Google Scholar 

  • Spence, C., & Mengistu, S. (2016). Deployment of an unmanned aerial system to assist in mapping an intermittent stream. Hydrological Processes, 30(3), 493–500.

    Article  Google Scholar 

  • Stanley, E. H., Fisher, S. G., & Grimm, N. B. (1997). Ecosystem expansion and contraction in streams. BioScience, 47(7), 427–435.

    Article  Google Scholar 

  • Steward, A. L., von Schiller, D., Tockner, K., Marshall, J. C., & Bunn, S. E. (2012). When the river runs dry: human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment, 10(4), 202–209.

    Article  Google Scholar 

  • Stubbington, R., England, J., Wood, P. J., & Sefton, C. E. (2017). Temporary streams in temperate zones: Recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems. Wiley Interdisciplinary Reviews Water, 4(4), e1223.

    Article  Google Scholar 

  • The Southeast Regional Climate Center (SERCC). (2012). Historical Climate Summaries for Virginia. http://www.sercc.com/climateinfo/historical/historical_va.html.

  • Travis M. R., Elsner G. H., & Iverson W. D. (1975). VIEWIT: computation of seen areas, slope and aspect for land-use planning. U.S. Forest Service General Technical Report PSW-11. U.S. Department of Agriculture.

  • Virginia Division of Mineral Resources. (1993). Geologic Map of Virginia, Scale 1:500,000. Virginia Division of Mineral Resources.

  • von Schiller, D., Bernal, S., Dahm, C. N., & Martí, E. (2017). Nutrient and organic matter dynamics in intermittent rivers and ephemeral streams. In T. Datry, N. Bonada, & A. Boulton (Eds.), Intermittent Rivers and Ephemeral Streams (pp. 135–160). Elsevier Inc..

  • Wang, L., & Liu, H. (2006). An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science, 20, 193–213.

    Article  CAS  Google Scholar 

  • Ward, A. S., Schmadel, N. M., & Wondzell, S. M. (2018). Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network. Advances in Water Resources, 114, 64–82.

    Article  Google Scholar 

  • Weill, S., Altissimo, M., Cassiani, G., Deiana, R., Marani, M., & Putti, M. (2013). Saturated area dynamics and streamflow generation from coupled surface–subsurface simulations and field observations. Advances in Water Resources, 59, 196–208.

    Article  Google Scholar 

  • Welter, J. R., & Fisher, S. G. (2016). The influence of storm characteristics on hydrological connectivity in intermittent channel networks: implications for nitrogen transport and denitrification. Freshwater Biology, 61(8), 1214–1227.

    Article  CAS  Google Scholar 

  • Whiting, J. A., & Godsey, S. E. (2016). Discontinuous headwater stream networks with stable flowheads, Salmon River basin, Idaho. Hydrological Processes, 30(13), 2305–2316.

    Article  Google Scholar 

  • Wigington, P. J., Moser, T. J., & Lindeman, D. R. (2005). Stream network expansion: a riparian water quality factor. Hydrological Processes, 19(8), 1715–1721.

    Article  Google Scholar 

  • Williams, C. E., & Johnson, W. C. (1990). Age structure and the maintenance of Pinus pungens in pine-oak forests of southwestern Virginia. American Midland Naturalist, 124(1), 130–141.

    Article  Google Scholar 

  • Wohl, E. (2017). The significance of small streams. Frontiers of Earth Science, 11(3), 447–456.

    Article  Google Scholar 

  • Zimmer, M. A., & McGlynn, B. L. (2017). Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment. Water Resources Research, 53(8), 7055–7077.

    Article  Google Scholar 

  • Rashaad Bhamjee, John B. Lindsay, Jaclyn Cockburn, (2016). Monitoring ephemeral headwater streams: a paired-sensor approach. Hydrological Processes 30(6), 888-898.

Download references

Acknowledgements

We thank Thomas Chapin for graciously explaining the sensor modification process; Tal Roberts for assistance with sensor modification; Gracie Erwin, Philip Prince, and Eryn Turney for help with field work; and one anonymous reviewer for helpful comments.

Funding

Funding for this study came from the Virginia Water Resources Research Center (VWRRC) 2015 Competitive Grant, Graduate Student Association Graduate Research Development Fund Award, and Cunningham Graduate Fellowship at Virginia Tech. Andy Dolloff was a co-author with Carrie Jensen for the VWRRC grant. We are grateful to the George Washington and Jefferson National Forest for their cooperation and participation in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie K. Jensen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, C.K., McGuire, K.J., McLaughlin, D.L. et al. Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors. Environ Monit Assess 191, 226 (2019). https://doi.org/10.1007/s10661-019-7373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7373-8

Keywords

Navigation