Skip to main content
Log in

The significance of small streams

  • Review
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R K, Spotila J A (2005). The form and function of headwater streams based on field and modeling investigations in the Southern Appalachian Mountains. Earth Surf Process Landf, 30(12): 1521–1546

    Article  Google Scholar 

  • Adams S B, Frissell C A, Rieman B E (2001). Geography of invasion in mountain streams: consequences of headwater lake fish introductions. Ecosystems (N Y), 4(4): 296–307

    Article  Google Scholar 

  • Alexander R B, Boyer E W, Smith R A, Schwarz G E, Moore R B (2007). The role of headwater streams in downstream water quality. J Am Water Resour Assoc, 43(1): 41–59

    Article  Google Scholar 

  • Allan J D (1995). Stream Ecology. Boston, MA: Kluwer Academic Publishers

    Book  Google Scholar 

  • Arthington A H, Bernardo J M, Ilheu M (2014). Temporary rivers: linking ecohydrology, ecological quality and reconciliation ecology. River Res Appl, 30(10): 1209–1215

    Article  Google Scholar 

  • Battin T J, Kaplan L A, Findlay S, Hopkinson C S, Marti E, Packman A I, Newbold J D, Sabater F (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci, 1(2): 95–100

    Article  Google Scholar 

  • Baxter C V, Fausch K D, Saunders W C (2005). Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol, 50(2): 201–220

    Article  Google Scholar 

  • Beasley C A, Hightower J E (2000). Effects of a low-head dam on the distribution and characteristics of spawning habitat used by striped bass and American shad. Trans Am Fish Soc, 129(6): 1316–1330

    Article  Google Scholar 

  • Benda L, Hassan M A, Church M, May C L (2005). Geomorphology of steepland headwaters: the transition from hillslopes to channels. J Am Water Resour Assoc, 41(4): 835–851

    Article  Google Scholar 

  • Bernhardt E S, Palmer M A (2011). The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Year Ecol Conserv Biol, 1223: 39–57

    Google Scholar 

  • Campbell I C, Doeg T J (1989). Impact of timber harvesting and production on streams: a review. Mar Freshw Res, 40(5): 519–539

    Article  Google Scholar 

  • Dietrich W E, Dunne T (1993). The channel head. In: Beven K, Kirkby M J, eds. Channel Network Hydrology. Chichester, UK: Wiley and Sons, 175–219

    Google Scholar 

  • Dietrich W E, Wilson C J, Montgomery D R, McKean J (1993). Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model. J Geol, 101(2): 259–278

    Article  Google Scholar 

  • Dietrich W E, Wilson C J, Montgomery D R, McKean J, Bauer R (1992). Erosion thresholds and land surface morphology. Geology, 20(8): 675–679

    Article  Google Scholar 

  • Dodds W K, Oakes R M (2008). Headwater influences on downstream water quality. Environ Manage, 41(3): 367–377

    Article  Google Scholar 

  • Downing J A, Cole J J, Duarte C M, Middelburg J J, Melack J M, Prairie Y T, Kortelainen P, Striegl R G, McDowell W H, Tranvik L J (2012). Global abundance and size distribution of streams and rivers. Inland Waters, 2(4): 229–236

    Article  Google Scholar 

  • Elmore A J, Kaushal S S (2008). Disappearing headwaters: patterns of stream burial due to urbanization. Front Ecol Environ, 6(6): 308–312

    Article  Google Scholar 

  • Falke J A, Fausch K D, Magelky R, Aldred A, Durnford D S, Riley L K, Oad R (2011). The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology, 4(5): 682–697

    Article  Google Scholar 

  • Ferguson R (2007). Flow resistance equations for gravel-and boulderbed streams. Water Resour Res, 43(5): doi: 10.1029/2006WR005422

    Google Scholar 

  • Freeman M C, Pringle C M, Jackson C R (2007). Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. J Am Water Resour Assoc, 43(1): 5–14

    Article  Google Scholar 

  • FSSSWG (Forest Service Stream-Simulation Working Group) (2008). Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings. USDA Forest Service National Technology and Development Program, 0877: 1801 (-SDTDC, San Dimas, CA.)

    Google Scholar 

  • Gomez B, Church M (1989). An assessment of bed load sediment transport formulae for gravel bed rivers. Water Resour Res, 25(6): 1161–1186

    Article  Google Scholar 

  • Gomi T, Sidle R C, Richardson J S (2002). Understanding processes and downstream linkages of headwater systems. Bioscience, 52(10): 905–916

    Article  Google Scholar 

  • Gooseff M N, Hall R O Jr, Tank J L (2007). Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resour Res, 43(1), doi: 10.1029/2005WR004626

    Google Scholar 

  • Griffith (1998). Lateral dispersal of the adult aquatic insects (Plecoptera, Trichoptera) following emergence from headwater streams in forested Appalachian catchments. Annals of the Entomological Society of America, 91 doi: http://dx.doi.org/10.1093/aesa/91.2.195

  • Grimm N B, Sheibley R W, Crenshaw C L, Dahm C N, Roach W J, Zeglin L H (2005). N retention and transformation in urban streams. J N Am Benthol Soc, 24(3): 626–642

    Article  Google Scholar 

  • Heine R A, Lant C L, Sengupta R R (2004). Development and comparison of approaches for automated mapping of stream channel networks. Ann Assoc Am Geogr, 94(3): 477–490

    Article  Google Scholar 

  • Henkle J E, Wohl E, Beckman N (2011). Locations of channel heads in the semiarid Colorado Front Range, USA. Geomorphology, 129(3-4): 309–319

    Article  Google Scholar 

  • Howarth R W (2008). Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae, 8(1): 14–20

    Article  Google Scholar 

  • Ijjasz-Vasquez E J, Bras R L (1995). Scaling regimes of local slope versus contributing area in digital elevation models. Geomorphology, 12(4): 299–311

    Article  Google Scholar 

  • Istanbulluoglu E, Tarboton D G, Pack R T, Luce C (2002). A probabilistic approach for channel initiation. Water Resour Res, 38(12): 61-1–61-14

    Google Scholar 

  • Jaeger K L, Montgomery D R, Bolton S M (2007). Channel and perennial flow initiation in headwater streams: management implications of variability in source-area size. Environ Manage, 40 (5): 775–786

    Article  Google Scholar 

  • Jaeger K L, Olden J D (2012). Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res Appl, 28(10): 1843–1852

    Article  Google Scholar 

  • Jaeger K L, Olden J D, Pelland N A (2014). Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc Natl Acad Sci USA, 111(38): 13894–13899

    Article  Google Scholar 

  • Jefferson A J, McGee R W (2013). Channel network extent in the context of historical land use, flow generation processes, and landscape evolution in the North Carolina Piedmont. Earth Surf Process Landf, 38(6): 601–613

    Article  Google Scholar 

  • Jones A (1971). Soil piping and stream channel initiation. Water Resour Res, 7(3): 602–610

    Article  Google Scholar 

  • Julian J P, Elmore A J, Guinn S M (2012). Channel head locations in forested watersheds across the mid-Atlantic United States: a physiographic analysis. Geomorphology, 177-178: 194–203

    Article  Google Scholar 

  • Leibowitz S G, Wigington P J Jr, Rains M C, Downing D M (2008). Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme Court’s Rapanos decision. Front Ecol Environ, 6(7): 364–371

    Article  Google Scholar 

  • MacDonald L H, Coe D (2007). Influence of headwater streams on downstream reaches in forested areas. For Sci, 53: 148–168

    Google Scholar 

  • McClain M E, Naiman R J (2008). Andean influences on the biogeochemistry and ecology of the Amazon River. Bioscience, 58 (4): 325–338

    Article  Google Scholar 

  • McGlynn B L, McDonnell J J, Seibert J, Kendall C (2004). Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour Res, 40(7): doi: 10.1029/2003WR002494

    Google Scholar 

  • Mersel M K, Lichvar R W (2014). A guide to ordinary high water mark (OHWM) delineation for non-perennial streams in the western mountains, valleys, and coast regions of the United States. U.S. Army Corps of Engineers, ERDC/CRREL TR-14-13, Hannover, NH

    Google Scholar 

  • Meyer J L, Kaplan L A, Newbold D, Woltemade C J, Zedler J B, Beilfuss R, Carpenter Q, Semlitsch R, Watzin M C, Zedler P H (2007b). Where rivers are born: the scientific imperative for defending small streams and wetlands. Sierra Club, San Francisco, CA

    Google Scholar 

  • Meyer J L, Strayer D L, Wallace J B, Eggert S L, Helfman G S, Leonard N E (2007a). The contribution of headwater streams to biodiversity in river networks. J Am Water Resour Assoc, 43(1): 86–103

    Article  Google Scholar 

  • Meyer J L, Wallace J B (2001). Lost linkages and lotic ecology: rediscovering small streams. In: Press M C, Huntly N J, Levin S, eds. Ecology: Achievement and Challenge. Orlando, FL: Blackwell Science, 295–317

    Google Scholar 

  • Montgomery D R, Beamer E M, Pess G R, Quinn T P (1999). Channel type and salmonid spawning distribution and abundance. Can J Fish Aquat Sci, 56(3): 377–387

    Article  Google Scholar 

  • Montgomery D R, Dietrich W E (1988). Where do channels begin? Nature, 336(6196): 232–234

    Article  Google Scholar 

  • Montgomery D R, Dietrich W E (1989). Source areas, drainage density, and channel initiation. Water Resour Res, 25(8): 1907–1918

    Article  Google Scholar 

  • Montgomery D R, Dietrich W E (1992). Channel initiation and the problem of landscape scale. Science, 255(5046): 826–830

    Article  Google Scholar 

  • Montgomery D R, Foufoula-Georgiou E (1993). Channel network source representation using digital elevation models. Water Resour Res, 29(12): 3925–3934

    Article  Google Scholar 

  • Nadeau T L, Rains M C (2007). Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. J Am Water Resour Assoc, 43(1): 118–133

    Article  Google Scholar 

  • Nakano S, Murakami M (2001). Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci USA, 98(1): 166–170

    Article  Google Scholar 

  • Nihlgard B J, Swank W T, Mitchell M J (1994). Biological processes and catchment studies. In: Moldan B, Cerny J, eds. Biogeochemistry of Small Catchments: A Tool for Environmental Research. Chichester, UK: John Wiley and Sons, 133–161

    Google Scholar 

  • Osterkamp W R (2008). Annotated definitions of selected geomorphic terms and related terms of hydrology, sedimentology, soil science and ecology. U.S. Geological Survey Open File Report 2008-1217, Reston, VA

    Google Scholar 

  • Palmer M A, Bernhardt E S, Schlesinger W H, Eshleman K N, Foufoula- Georgiou E, Hendryx M S, Lemly A D, Likens G E, Loucks O L, Power M E, White P S, Wilcock P R (2010). Mountaintop mining consequences. Science, 327(5962): 148–149

    Article  Google Scholar 

  • Paul M J, Meyer J L (2001). Streams in the urban landscape. Annu Rev Ecol Syst, 32(1): 333–365

    Article  Google Scholar 

  • Petersen R C, Madsen B L, Wilzbach M W, Magadza C H, Paarlberg A, Kullberg A, Cummins K W (1987). Stream management: emerging global similarities. Ambio, 16: 166–179

    Google Scholar 

  • Peterson B J, Wollheim W M, Mulholland P J, Webster J R, Meyer J L, Tank J L, Marti E, Bowden W B, Valett H M, Hershey A E, McDowell W H, Dodds W K, Hamilton S K, Gregory S, Morrall D D (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292(5514): 86–90

    Article  Google Scholar 

  • Polvi L E, Wohl E (2013). Biotic drivers of stream planform: implications for understanding the past and restoring the future. Bioscience, 63(6): 439–452

    Article  Google Scholar 

  • Pond G J, Fritz K M, Johnson B R (2016). Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream. Hydrobiologia, 779(1): 75–91

    Article  Google Scholar 

  • Prosser I P, Abernethy B (1996). Predicting the topographic limits to a gully network using a digital terrain model and process thresholds. Water Resour Res, 32(7): 2289–2298

    Article  Google Scholar 

  • Prosser I P, Dietrich W E (1995). Field experiments on erosion by overland flow and their implication for a digital terrain model of channel initiation. Water Resour Res, 31(11): 2867–2876

    Article  Google Scholar 

  • Reynolds L V, Shafroth P B, Poff N L (2015). Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change. J Hydrol (Amst), 523: 768–780

    Article  Google Scholar 

  • Ricciardi A, Rasmussen J B (1999). Extinction rates of North American freshwater fauna. Conserv Biol, 13(5): 1220–1222

    Article  Google Scholar 

  • Richardson J S, Bilby R E, Bondar C A (2005). Organic matter dynamics in small streams of the Pacific Northwest. J Am Water Resour Assoc, 41(4): 921–934

    Article  Google Scholar 

  • Richardson J S, Danehy R J (2007). A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. For Sci, 53: 131–147

    Google Scholar 

  • Sawyer A H, Bayani Cardenas M, Buttles J (2012). Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resour Res, 48(1): W01529

    Google Scholar 

  • Schlosser I J (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia, 303(1-3): 71–81

    Article  Google Scholar 

  • Schumm S A (1977). The Fluvial System. New York: Wiley and Sons

    Google Scholar 

  • Smock L A, Gladden J E, Riekenberg J L, Smith L C, Black C R (1992). Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments. Ecology, 73(3): 876–886

    Article  Google Scholar 

  • Speaker R, Moore K, Gregory S (1984). Analysis of the process of retention of organic matter in stream ecosystems. Verh Internat Verein Limnol, 22: 1835–1841

    Google Scholar 

  • Stanford J A, Ward J V (1988). The hyporheic habitat of river ecosystems. Nature, 335(6185): 64–66

    Article  Google Scholar 

  • Strahler A N (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63(11): 1117–1142

    Article  Google Scholar 

  • Sweeney B W, Bott T L, Jackson J K, Kaplan L A, Newbold J D, Standley L J, Hession C W, Horwitz R J (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci USA, 101(39): 14132–14137

    Article  Google Scholar 

  • Tarboton D G, Bras R L, Rodriguez-Iturbe I (1991). On the extraction of channel networks from digital elevation data. Hydrol Processes, 5(1): 81–100

    Article  Google Scholar 

  • Tarolli P, Dalla Fontana G (2009). Hillslope-to-valley transition morphology: new opportunities from high resolution DTMs. Geomorphology, 113(1-2): 47–56

    Article  Google Scholar 

  • Tockner K, Malard F, Ward J V (2000). An extension of the flood pulse concept. Hydrol Processes, 14(16-17): 2861–2883

    Article  Google Scholar 

  • U.S. Army Corps of Engineers (2012). 2012 Nationwide Permits, Conditions, District Engineer’s Decision, Further Information, and Definitions. http://www.usace.army.mil/Portals/2/docs/civilworks/nwp/2012/NWP2012_corrections_21-sep-2012.pdf

    Google Scholar 

  • Ward J V, Stanford J A (1995). Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul Rivers Res Manage, 11(1): 105–119

    Article  Google Scholar 

  • Webster J R, Benfield E F, Ehrman T P, Schaeffer M A, Tank J L, Hutchens J J, D’Angelo D J (1999). What happens to allochthonous materials that fall into streams: a synthesis of new and published information from Coweeta. Freshw Biol, 41(4): 687–705

    Article  Google Scholar 

  • Wipfli M S, Gregovich D P (2002). Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshw Biol, 47(5): 957–969

    Article  Google Scholar 

  • Wipfli M S, Richardson J S, Naiman R J (2007). Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. J Am Water Resour Assoc, 43(1): 72–85

    Article  Google Scholar 

  • Wohl E (2010). Mountain Rivers Revisited. Washington, DC: American Geophysical Union Press

    Book  Google Scholar 

  • Wohl E (2013). Migration of channel heads following wildfire in the Colorado Front Range, USA. Earth Surf Process Landf, 38(9): 1049–1053

    Article  Google Scholar 

  • Wohl E (2014). Rivers in the Landscape: Science and Management. Chichester, UK: Wiley Blackwell

    Google Scholar 

  • Wohl E E, Pearthree P A (1991). Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona. Geomorphology, 4 (3-4): 273–292

    Article  Google Scholar 

  • Yetemen O, Istanbulluoglu E, Vivoni E R (2010). The implications of geology, soils, and vegetation on landscape morphology: inferences from semi-arid basins with complex vegetation patterns in central New Mexico, USA. Geomorphology, 116(3-4): 246–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Wohl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wohl, E. The significance of small streams. Front. Earth Sci. 11, 447–456 (2017). https://doi.org/10.1007/s11707-017-0647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-017-0647-y

Keywords

Navigation