Skip to main content

Advertisement

Log in

Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are increasingly used in several industrial and household products because of their antibacterial and antifungal properties. Hence, there is an inevitable risk that these chemicals may end up in aquatic biotopes and have adverse effects on the fauna. In order to assess potential health effects on aquatic organisms, this study evaluated the effects of waterborne AgNP exposure for 7 days on a set of critical stress parameters in juvenile Caspian kutum (Rutilus kutum), an economically important fish in the Caspian Sea. The applied level 11 μg/l of AgNP is high compared to reported water concentrations and corresponds to 40% of the 96 h LC50 value, initially determined to be 28 μg/l. Gill heat shock protein 70 (hsp70) mRNA expression, Na+/K+-ATPase activity and enzymatic activities of liver superoxide dismutase (SOD), glutathione peroxidase (Gpx), lactate dehyrogenase (LDH) and alkaline phosphatase (ALP), and whole-body cortisol and thyroid hormones (T3 and T4) were measured as endpoints. Gill hsp70 mRNA expression increased and gill Na+/K+-ATPase activity decreased in AgNP-exposed fish compared to controls. The specific activities of all liver enzymes decreased significantly compared to controls. Whole-body cortisol and thyroid hormones decreased compared to controls. In conclusion, the study demonstrates that AgNPs cause oxidative stress and gill osmoregulatory disruption in Caspian kutum juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M., & Rowe, J. J. (2010). Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology, 242(3), 263–269.

    Article  CAS  Google Scholar 

  • Almeida, J., Novelli, E., Silva, M. D. P., & Júnior, R. A. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environmental Pollution, 114(2), 169–175.

    Article  CAS  Google Scholar 

  • Aluru, N., Jorgensen, E. H., Maule, A. G., & Vijayan, M. M. (2004). PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 287(4), R787–R793.

    Article  CAS  Google Scholar 

  • Antognelli, C., Romani, R., Baldracchini, F., De Santis, A., Andreani, G., & Talesa, V. (2003). Different activity of glyoxalase system enzymes in specimens of Sparus auratus exposed to sublethal copper concentrations. Chemico-Biological Interactions, 142(3), 297–305.

    Article  CAS  Google Scholar 

  • Aydın, R., & Köprücü, K. (2005). Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos and larvae. Pesticide Biochemistry and Physiology, 82(3), 220–225.

    Article  Google Scholar 

  • Bacchetta, C., Ale, A., Simoniello, M. F., Gervasio, S., Davico, C., Rossi, A. S., Desimone, M. F., Poletta, G., López, G., Monserrat, J. M., & Cazenave, J. (2017). Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecological Indicators, 76, 230–239.

    Article  CAS  Google Scholar 

  • Banaee, M., Sureda, A., Zohiery, F., Hagi, B. N., & Garanzini, D. S. (2014). Alterations in biochemical parameters of the freshwater fish, Alburnus mossulensis, exposed to sublethal concentrations of fenpropathrin. International Journal of Aquatic Biology, 2(2), 58–68.

    Google Scholar 

  • Banaee, M., Sureda, A., Shahaf, S., & Fazilat, N. (2015). Protective effects of silymarin extract on malthion-induced zebra cichlid (Cichlasoma nigrofasciatum) hepatotoxicity. Iranian Journal of Toxicology, 9(28), 1239–1246.

    Google Scholar 

  • Barnes, J., Zheng, Y., & Lyons, T. (2002). Plant resistance to ozone: the role of ascorbate. In K. Omasa, H. Saji, S. Youssefian, & N. Kondo (Eds.), Air pollution and plant biotechnology (pp. 235–252). New York: Springer.

    Chapter  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276–287.

    Article  CAS  Google Scholar 

  • Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S., & Autrup, H. (2012). Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicology Letters, 208, 286–292.

    Article  CAS  Google Scholar 

  • Bianchini, A., Grosell, M., Gregory, S. M., & Wood, C. M. (2002). Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environmental Science & Technology, 36(8), 1763–1766.

    Article  CAS  Google Scholar 

  • Bilberg, K., Hovgaard, M. B., Besenbacher, F., & Baatrup, E. (2012). In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). Journal of Toxicology. doi:10.1155/2012/293784.

  • Carew, A. C., Hoque, M. E., Metcalfe, C. D., Peyrot, C., Wilkinson, K. J., & Helbing, C. C. (2015). Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis. Aquatic Toxicology, 159, 99–108.

    Article  CAS  Google Scholar 

  • Chae, Y. J., Pham, C. H., Lee, J., Bae, E., Yi, J., & Gu, M. B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicology, 94(4), 320–327.

    Article  CAS  Google Scholar 

  • Choi, J. E., Kim, S., Ahn, J. H., Youn, P., Kang, J. S., Park, K., Yi, J., & Ryu, D. Y. (2010). Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic Toxicology, 100(2), 151–159.

    Article  CAS  Google Scholar 

  • Farmen, E., Mikkelsen, H., Evensen, Ø., Einset, J., Heier, L., Rosseland, B., Salbu, B., Tollefsen, K. E., & Oughton, D. H. (2012). Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/l concentrations of Ag nanoparticles. Aquatic Toxicology, 108, 78–84.

    Article  CAS  Google Scholar 

  • Ghaninejad, D., Moghim, M., Burani, S., & Abdolmaleki, S. (2001). Stock assessment of bony fish in the Caspian Sea. Final report. Bony Fish Research Center. p. 98.

  • Girilal, M., Krishnakumar, V., Poornima, P., Fayaz, A. M., & Kalaichelvan, P. (2015). A comparative study on biologically and chemically synthesized silver nanoparticles induced heat shock proteins on fresh water fish Oreochromis niloticus. Chemosphere, 139, 461–468.

    Article  CAS  Google Scholar 

  • Gottschalk, F., Ort, C., Scholz, R. W., & Nowack, B. (2011). Engineered nanomaterials in rivers—exposure scenarios for Switzerland at high spatial and temporal resolution. Environmental Pollution, 159, 3439–3445.

    Article  CAS  Google Scholar 

  • Griffitt, R. J., Hyndman, K., Denslow, N. D., & Barber, D. S. (2009). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences, 107(2), 404–415.

    Article  CAS  Google Scholar 

  • Grosell, M., Brauner, C. J., Kelly, S. P., McGeer, J. C., Bianchini, A., & Wood, C. M. (2002). Physiological responses to acute silver exposure in the freshwater crayfish (Cambarus diogenes diogenes)—a model invertebrate? Environmental Toxicology and Chemistry, 21(2), 369–374.

    CAS  Google Scholar 

  • Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295(5561), 1852–1858.

    Article  CAS  Google Scholar 

  • Hontela, A. (2006). Corticosteroidogenesis and StAR protein of rainbow trout disrupted by human-use pharmaceuticals: data for use in risk assessment. Toxicological Sciences, 93(1), 1–2.

    Article  CAS  Google Scholar 

  • Iwama, G. K., Thomas, P. T., Forsyth, R. B., & Vijayan, M. M. (1998). Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries, 8(1), 35–56.

    Article  Google Scholar 

  • Jang, M. H., Kim, W. K., Lee, S. K., Henry, T. B., & Park, J. W. (2014). Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environmental Science & Technology, 48(19), 11568–11574.

    Article  CAS  Google Scholar 

  • Joo, H. S., Kalbassi, M. R., Yu, I. J., Lee, J. H., & Johari, S. A. (2013). Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquatic Toxicology, 140, 398–406.

    Google Scholar 

  • Katsumiti, A., Gilliland, D., Arostegui, I., & Cajaraville, M. P. (2015). Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PloS One, 10(6), e0129039.

    Article  Google Scholar 

  • Katuli, K. K., Massarsky, A., Hadadi, A., & Pourmehran, Z. (2014). Silver nanoparticles inhibit the gill Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 106, 173–180.

    Article  CAS  Google Scholar 

  • Kim, S., & Ryu, D. Y. (2013). Silver nanoparticle induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology, 33(2), 78–89.

    Article  Google Scholar 

  • Kime, D. (1978). The hepatic catabolism of cortisol in teleost fish—adrenal origin of 11-oxotestosterone precursors. General and Comparative Endocrinology, 35(3), 322–328.

    Article  CAS  Google Scholar 

  • Kroglund, F., Rosseland, B., Teien, H.-C., Salbu, B., Kristensen, T., & Finstad, B. (2007). Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes. Hydrology and Earth System Sciences, 12, 491–507.

    Article  Google Scholar 

  • Lee, K. J., & Hahn, G. M. (1988). Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite. Journal of Cellular Physiology, 136(3), 411–420.

    Article  CAS  Google Scholar 

  • Lee, B., Duong, C. N., Cho, J., Lee, J., Kim, K., Seo, Y., Kim, P., Choi, K., & Yoon, J. (2012). Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). Journal of Biomedicine and Biotechnology. doi:10.1155/2012/262670.

  • Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., & Jiang, G. (2008). Elemental selenium particles at nano-size (nano-Se) are more toxic to medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquatic Toxicology, 89(4), 251–256.

    Article  CAS  Google Scholar 

  • Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., & Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety, 72(3), 684–692.

    Article  CAS  Google Scholar 

  • Li, Z.-H., Chen, L., Wu, Y.-H., Li, P., Li, Y.-F., & Ni, Z.-H. (2014). Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae. Comparative biochemistry and physiology Part C. Toxicology & Pharmacology, 161, 53–57.

    CAS  Google Scholar 

  • Lopez, C., Pineiro, A., Nunez, N., Avagnina, A., Villaamil, E., & Roses, O. (2000). Thyroid hormone changes in males exposed to lead in the Buenos Aires area (Argentina). Pharmacological Research, 42(6), 599–602.

    Article  CAS  Google Scholar 

  • Lower, N., Moore, A., Scott, A., Ellis, T., James, J., & Russell, I. (2005). A non-invasive method to assess the impact of electronic tag insertion on stress levels in fishes. Journal of Fish Biology, 67(5), 1202–1212.

    Article  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Martínez-Porchas, M., Martínez-Córdova, L. R., & Ramos-Enriquez, R. (2009). Cortisol and glucose: reliable indicators of fish stress. Pan-American Journal of Aquatic Sciences, 4(2), 158–178.

    Google Scholar 

  • Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdörster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J., & Warheit, D. B. (2006). Safe handling of nanotechnology. Nature, 444(7117), 267–269.

    Article  CAS  Google Scholar 

  • McCormick, S. D. (1993). Methods for nonlethal gill biopsy and measurement of Na+,K+-ATPase activity. Canadian Journal of Fisheries and Aquatic Sciences, 50, 656–658.

    Article  CAS  Google Scholar 

  • Miao, W., Zhu, B., Xiao, X., Li, Y., Dirbaba, N. B., Zhou, B., & Wu, H. (2015). Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquatic Toxicology, 161, 117–126.

    Article  CAS  Google Scholar 

  • Musee, N., Thwala, M., & Nota, N. (2011). The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. Journal of Environmental Monitoring, 13, 1164–1183.

    Article  CAS  Google Scholar 

  • Nebeker, A. V., McAuliffe, C. K., Mshar, R., & Stevens, D. G. (1983). Toxicity of silver to steelhead and rainbow trout, fathead minnows and Daphnia magna. Environmental Toxicology and Chemistry, 2(1), 95–104.

    Article  CAS  Google Scholar 

  • OECD. (2000). Guideline for the testing of chemicals No. 215. Fish, juvenile growth test. Paris: Organisation for Economic Co-operation and Development.

  • Ostrander, G. K. (2000). The laboratory fish. London: Academic Press.

    Google Scholar 

  • Peter, M. S. (2011). The role of thyroid hormones in stress response of fish. General and Comparative Endocrinology, 172(2), 198–210.

    Article  CAS  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Research, 29(9), e45–e45.

    Article  CAS  Google Scholar 

  • Pham, C. H., Yi, J., & Gu, M. B. (2012). Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicology and Environmental Safety, 78, 239–245.

    Article  CAS  Google Scholar 

  • Rajkumar, K., Kanipandian, N., & Thirumurugan, R. (2016). Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles exposed freshwater fish Labeo rohita. Applied Nanoscience, 6(1), 19–29.

    Article  CAS  Google Scholar 

  • Reidy, B., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295–2350.

    Article  CAS  Google Scholar 

  • Rothman, J. E. (1989). Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell, 59(4), 591–601.

    Article  CAS  Google Scholar 

  • Schultz, A. G., Ong, K. J., MacCormack, T., Ma, G., Veinot, J. G., & Goss, G. G. (2012). Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Science & Technology, 46(18), 10295–10301.

    Article  CAS  Google Scholar 

  • Shalulei, F., Hedayati, A., Jahanbakhshi, A., Kolangi, H., & Fotovat, M. (2013). Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Human and Experimental Toxicology. doi:10.1177/0960327113485258.

  • Sharyati, A. (1993). Fish of the Caspian Sea region (pp. 77–79). Iran: Iranian Fisheries Company.

    Google Scholar 

  • Shrimpton, J. M., & Mccormick, S. D. (1999). Responsiveness of gill Na+/K+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. Journal of Experimental Biology, 202(8), 987–995.

    CAS  Google Scholar 

  • Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155.

    Article  CAS  Google Scholar 

  • Singh, R. K., & Sharma, B. (1998). Carbofuran induced biochemical changes in Clarias batrachus. Pesticide Science, 53(4), 285–290.

    Article  CAS  Google Scholar 

  • Sink, T. D., Kumaran, S., & Lochmann, R. T. (2007). Development of a whole-body cortisol extraction procedure for determination of stress in golden shiners, Notemigonus crysoleucas. Fish Physiology and Biochemistry, 33(3), 189–193.

    Article  CAS  Google Scholar 

  • Teodorescu, D., Munteanu, M. C., Staicu, A. C., & Dinischiotu, A. (2012). Changes in lactate dehydrogenase activity in Carassius auratus gibelio (L. Pysces) kidney, gills and intestine induced by acute exposure to copper. Romanian Biotechnological Letters, 17(6), 7873–7880.

    CAS  Google Scholar 

  • Völker, C., Oetken, M., & Oehlmann, J. (2013). The biological effects and possible modes of action of nanosilver. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology Vol 223 (pp. 81–106). New York: Springer.

    Chapter  Google Scholar 

  • Völker, C., Kämpken, I., Boedicker, C., Oehlmann, J., & Oetken, M. (2015). Toxicity of silver nanoparticles and ionic silver: comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Nanotoxicology, 9(6), 677–685.

    Article  Google Scholar 

  • Wang, J., & Wang, W.-X. (2014). Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma). Environmental Science & Technology, 48(14), 8152–8161.

    Article  CAS  Google Scholar 

  • Wigger, H. (2017). Risk assessment of technological innovations. In Environmental release of and exposure to iron oxide and silver nanoparticles (pp. 11–50). Wiesbaden: Springer Fachmedien. doi:10.1007/978-3-658-16791-2_2.

  • Wood, C. M., Playle, R. C., & Hogstrand, C. (1999). Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environmental Toxicology and Chemistry, 18(1), 71–83.

    Article  CAS  Google Scholar 

  • Wu, Y., & Zhou, Q. (2013). Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry, 32(1), 165–173.

    Article  CAS  Google Scholar 

  • Yang, J., Chen, G., Huang, J.-s., Zhang, J.-d., Shi, G., Tang, B.-g., & Zhou, H. (2007). Effects of temperature and salinity on the growth and activities of antioxidant enzymes of cobia (Rachycentron canadum) juveniles. Journal of Guangdong Ocean University, 2007-04.

Download references

Acknowledgements

The authors acknowledge the Department of Biology of University of Southern Denmark and Department of Biochemistry of University of Guilan, Iran, for providing necessary lab facilities to carry out the work successfully. This research was supported by the University of Tehran (grant # 6/31/2703010). SSM was supported also by a grant from The Danish Research Council for Independent Research (DFF-4181-00020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen S. Madsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masouleh, F.F., Amiri, B.M., Mirvaghefi, A. et al. Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901). Environ Monit Assess 189, 448 (2017). https://doi.org/10.1007/s10661-017-6156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6156-3

Keywords

Navigation