Skip to main content

Advertisement

Log in

Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study integrates the application of Dempster–Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate–high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of groundwater resources in the area. The overall results proved the efficacy of the data mining model and the geospatial technology in groundwater potential mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdulrahman, A., Nawawi, M. N. M., Rosli, S., & Adiat, K. A. N. (2013). Volumetric assessment of leachate from solid waste using 2D and 3D electrical resistivity imaging. Advanced Materials Research Vols (pp. 3014–3022). Switzerland: Trans Tech Publications.

    Google Scholar 

  • Abdulrahman, A., Nawawi, M. N. M., Rosli, S., Abu-Rizaiza, A. S., Yusoff, M. S., Khalil, A. E., & Ishola, K. S. (2016). Characterization of active and closed landfill sites using 2D resistivity/IP imaging: case studies in Penang, Malaysia. Environment and Earth Science, 75, 347. doi:10.1007/s12665-015-5003-5.

    Article  Google Scholar 

  • Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool—a case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology, 440, 75–89. doi:10.1016/j.jhydrol.2012.03.028.

    Article  Google Scholar 

  • Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2013). Application of multi-criteria decision analysis to geoelectric and geologic parameters for spatial prediction of groundwater resources potential and aquifer evaluation. Pure and Applied Geophysics, 170, 453–471. doi:10.1007/s00024-012-0501-9.

    Article  Google Scholar 

  • Al-Abadi, A. M. (2015a). Groundwater potential mapping at northeastern Wasit and Missan governorates, Iraq using a data-driven weights of evidence technique in framework of GIS. Environment and Earth Science. doi:10.1007/s12665-015-4097-0.

  • Al-Abadi, A. M. (2015b). The application of Dempster-Shafer theory of evidence for assessing groundwater vulnerability at Galal Badra basin, Wasit governorate, east of Iraq. Applied Water Science. doi:10.1007/s13201-015-0342-7.

  • Al-Abadi, A. M., & Shahid, S. (2015). A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region. Environmental Monitoring and Assessment, 187, 576. doi:10.1007/s10661-015-4801-2.

    Article  Google Scholar 

  • Al-Saud, M. (2010). Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeology Journal, 18, 1481–1495.

    Article  Google Scholar 

  • Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers and Geosciences, 44, 120–135.

    Article  Google Scholar 

  • An, P., Moon, W. M., & Bonham-Carter, G. F. (1994). An object-oriented knowledge representation structure for exploration data integration data. Nonrenew. Resources, 3, 60–71.

    Article  Google Scholar 

  • Anomohanran, O. (2015). Hydrogeophysical and hydrogeological investigations of groundwater resources in Delta Central, Nigeria. J. TaibahUniv. Sci., 9(2015), 57–68.

    Google Scholar 

  • Asry, Z., Samsudin, A. R., Yaacom, W. Z., & Yaakub, J. (2012). Groundwater investigation using electrical resistivity imaging technique at Sg. Udang, Malaka, Malaysia. Bulletin of the Geological Survey of Malaysia, 58, 55–58.

    Google Scholar 

  • Batayneh, A. T. (2006). Use of electrical resistivity methods for detecting subsurface fresh and saline water and delineating their interfacial configuration: a case study of the eastern Dead Sea coastal aquifers. Jordan Hydrogeology Journal, 14, 1277–1283. doi:10.1007/s10040-006-0034-3.

    Article  CAS  Google Scholar 

  • Brindha, K., & Elango, L. (2015). Cross comparison of five popular groundwater pollution vulnerability, index approaches. Journal of Hydrology, 524(2015), 597–613.

    Article  Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia. Natural Resources Research, 14(1). doi:10.1007/s11053-005-4678-9.

  • Carranza, E. J. M., Van Ruitenbeek, F. J. A., Hecker, C., Van Der Meijde, M., & Van der Meer, F. D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374–387.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater. International Journal of Remote Sensing, 30(1), 231–250.

    Article  Google Scholar 

  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111, 79–87. doi:10.1016/j.geomorph.2008.03. 015.

  • Dempster, A. P. (1967). Upper and lower probabilities induced by a multi-valued mapping. Annals of Mathematical Statistics, 38, 325–339.

    Article  Google Scholar 

  • Dempster, A. P. (1968). A generalisation of Bayesian inference. Journal of the Royal Statistical Society, 30, 205–247.

    Google Scholar 

  • Doll, P., Lehner, B., & Kaspar, F. (2002). Global modeling of groundwater recharge. In: Proceedings of 3rd International Conference on water resources and the environment research (Vol. 1, pp. 27–33). Germany: Technical University of Dresden.

    Google Scholar 

  • Edet, A. E., Okereke, C. S., Teme, S. C., & Esu, E. O. (1998). Application of remotesensing data to groundwater exploration: a case study of the Cross River State, southeastern Nigeria. Hydrological Journal, 6, 394–404.

    Google Scholar 

  • Ekwe, A. C., Nnodu, I. N., Ugwumbah, K. I., & Onwuka, O. S. (2010). Estimation of aquifer hydraulic characteristics of low permeability formation from geosounding data: a case study of Oduma town, Enugu state. Journal of Earth Sciences, 4(1), 19–26.

    Google Scholar 

  • Ettazarizini, E.l., & Mahmouhi, N. (2004). Vulnerability mapping of the Turonian limestone aquifer in the Phosphate Plateau (Morocco). Environmental Geology, 46, 113–117. doi:10.1007/s00254-004-1022-3.

  • Ewusi, A., Kuma, J. S., & Voigt, H. J. (2009). Utility of the 2-D multi-electrode resistivity imaging technique in groundwater exploration in the Voltaian sedimentary basin, Northern Ghana. Natural Resources Research, 18(4), 267–275. doi:10.1007/s11053-009-9102-4.

    Article  Google Scholar 

  • Greenbaum, D. (1985). Review of remote sensing applications to groundwater exploration in basement and regolith.

  • Hadithi, M. A., Shukla, D. C., & Israil, M. (2003). Evaluation of groundwater resources potential in Ratmau-Pathri Rao watershed Haridwar district, Uttaranchal, India using geo-electrical, remote sensing and GIS techniques (pp. 123–112). Bhopal, India: Proceedings of the International Conference onWater and Environment (WE-2003).

    Google Scholar 

  • He, B., Cu, Y., Chen, C., Chen, J., & Liu, Y. (2011). Uncertainty mapping method for mineral resources prospectivity integrating multi-source geology spatial data sets and evidence reasoning model, 978–1–61284-848-8/11/ IEEE.

  • Hoque, M. A., Khan, A. A., Shamsudduha, M., Hossain, M. S., Islam, T., & Chowdhury, S. H. (2009). Near surface lithology and spatial variation of arsenic in the shallow groundwater: southeastern Bangladesh. Environmental Geology, 56, 1687–1695. doi:10.1007/s00254-008-1267-3.

    Article  CAS  Google Scholar 

  • Ikechukwu, B. I. (2012). Evaluation of the aquifer hydraulic characteristics from electrical sounding data in Imo River basin, South Eastern Nigeria: the case of Ogwashi-Asaba Formation. International Journal of Modern Engineering Research (IJMER), 2(5), 3237–3244 www.ijmer.com.

    Google Scholar 

  • Ishola, K., Nawawi, M. N. M., & Abdullah, K. (2015). Combining multiple electrode arrays for two-dimensional electrical resistivity imaging using the unsupervised classification technique. Pure Appl. Geopphys., 172, 1615–1642.

    Article  Google Scholar 

  • Israil, M., Al-hadithi, M., & Singhal, D. C. (2006). Application of resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeology Journal, 14(5), 753–759.

    Article  CAS  Google Scholar 

  • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. International Journal of Remote Sensing, 24(5), 993–1008.

  • Jha, M. K., & Peiffer, S. (2006). Applications of remote sensing and GIS technologies in groundwater hydrology: past, present and future. Bayreuth, Germany: BayCEER 201 pp.

    Google Scholar 

  • Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resources Management, 21, 427–467.

    Article  Google Scholar 

  • Jha, M., Chowdary, V., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713–1728. doi:10.1007/s10040-010-0631-z.

    Article  Google Scholar 

  • Kayode, J. S., Adelusi, A. O., Nawawi, M. N. M., Bawallah, M., & Olowolafe, T. S. (2016). Geo-electrical investigation of near surface conductive structures suitable for groundwater accumulation in a resistive crystalline basement environment: a case study of Isuada, southwestern Nigeria. Journal of African Earth Sciences, 119(2016), 289–302.

    Article  Google Scholar 

  • Khan, M. A., & Maharana, P. C. (2002). Use of remote sensing and GIS in the delineation and characterization of groundwater prospect zones. Photonirvachak J Indian Soc Remote Sens, 30(3), 131–141.

  • Kumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest of India. Indian J Remote Sens, 28(24), 5583–5601.

    Article  Google Scholar 

  • Lee, S., Kyo-Young, K., & Hyun-Joo, O. (2012a). HYongsung PI application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. Journal of Environmental Management, 96, 91–105.

    Article  Google Scholar 

  • Lee, S. S., Kyo-Young, K., & Yongsung, P. I. (2012b). Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 1–17. doi:10.1007/s10040-012-0894-7.

  • Lee, S., Hwang, J., & Parl, I. (2012c). Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena, 100, 15–30.

    Article  Google Scholar 

  • Madrucci, V., Taioli, F., & de -Araujo, C. C. (2008). Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State, Brazil. Journal of Hydrology, 357, 153–173.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing. GIS and MIF techniques. Geosci. Frontiers, 3(2), 189–119.

    Article  Google Scholar 

  • Manap, M.A., Sulaiman, W.N.A, Ramli, M.F., Pradhan, B., & Surip. N. (2013). A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab. J. Geosci. 6 (5), 1621– 1637. doi.org/10.1007/s12517-011-0469-2. 

  • Meijerink, A.M.J. (2007). Remote sensing applications to groundwater. IHP-VI, Series on Groundwater No. 16, UNESCO, Paris.

  • Mogaji, K. A. (2016). Geoelectrical parameter-based multivariate regression borehole yieldmodel for predicting aquifer yield in managing groundwater resource sustainability. J. Taibah Univ. Sci. doi:10.1016/j.jtusci.2015.12.006.

  • Mogaji, K. A. (2017). Development of AHPDST vulnerability indexing model for groundwater vulnerability assessment using hydrogeophysical derived parameters and GIS application. Pure and Applied Geophysics. doi:10.1007/s00024-017-1499-9.

  • Mogaji, K. A., & Lim, H. S. (2017). Development of groundwater favourability map using GIS-based driven data mining models: an approach for effective groundwater resource management. Geocarto International. doi:10.1080/10106049.2016.1273400.

  • Mogaji, K. A., Lim, H. S., & Abdullah, K. (2015a). Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arabian Journal of Geosciences, 8, 3235–3258. doi:10.1007/s12517-014-1391-1.

    Article  Google Scholar 

  • Mogaji, K. A., Lim, H. S., & Abdullah, K. (2015b). Modeling of groundwater recharge using a multiple linear regression (MLR) recharge model developed from geophysical parameters: a case of groundwater resources management. Environmental Earth Sciences. doi:10.1007/s12665-014-3476-.

  • Mogaji, K. A., Omosuyi, G. O., Adelusi, A. O., & Lim, H. S. (2016). Application of GIS-based evidential belief function model to regional groundwater recharge potential zones mapping in Hardrock geologic terrain. Environ. Process., 3, 93–123. doi:10.1007/s40710-016-0126-6.

    Article  Google Scholar 

  • Elmahdy, S. I., & Mohamed, M. M. (2014). Probabilistic frequency ratio model for groundwater potential mapping in Al Jaww plain, UAE. Arabian Journal of Geosciences. doi:10.1007/s12517-014-1327-9.

  • Mohamed, S. E. J., Shaharin, I., Wan, N. A. S., & Puziah, A. L. (2013). Groundwater resources assessment using integrated geophysical techniques in the southwestern region of peninsular Malaysia. Arabian Journal of Geosciences, 6(11), 4129–4144.

    Article  Google Scholar 

  • Murthy, K. S. R. (2000). Groundwater potential in a semi-arid region of Andhra Pradesh: a GIS approach. International Journal of Remote Sensing, 21(9), 1867–1884.

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2014). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iraq. Earth Sci Inform. doi:10.1007/s12145-014-0145-7.

  • Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • Neshat, A., Pradhan, B., Pirasteh, S., & Shafri, H. Z. M. (2013). Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environment and Earth Science, 1–13. doi:10.1007/ s12665-013-2690-7.

  • Ofomola, M. O., Ako, B. D., & Adelusi, A. O. (2016). Flow direction and velocity determination of dumpsite-induced groundwater contamination in part of Delta State, Nigeria. Arabian Journal of Geosciences, 9, 398. doi:10.1007/s12517-016-2405-y.

    Article  Google Scholar 

  • Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399, 158–172.

    Article  Google Scholar 

  • Okogbue, C. O., & Omonona, O. V. (2013). Groundwater potential of the Egbe-Mopa basement area, central Nigeria. Hydrological Sciences Journal, 58(4), 826–840.

    Article  Google Scholar 

  • Olayinka, A. I., & Olayiwola, M. A. (2001). Integrated use of geoelectrical imaging and hydrochemical methods in delineating limits of polluted surface and groundwater at a landfill site in Ibadan area, southwestern Nigeria. Journal of Mining and Geology, 37(1), 53–68.

    Google Scholar 

  • Opara, A. I., Ugada, U., Ibe, K. K., & Akaolisa, C. Z. (2014). Hydrogeophysical evaluation of aquifer hydraulic characteristics using surface geophysical data: a case study of Umuahia and environs. Southeastern Nigeria. Arab J Geosci, 7, 5397–5408. doi:10.1007/s12517-013-1150-8.

    Article  Google Scholar 

  • Ozdemir, A. (2011a). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411, 290–308.

    Article  Google Scholar 

  • Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.

    Article  Google Scholar 

  • Park, N. W. (2010). Application of Dempster–Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environmental Earth Sciences., 62(2), 367–376.

    Article  Google Scholar 

  • Park, N. W. (2011). Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environmental Earth Sciences, 62, 367–337.

    Article  Google Scholar 

  • Park, I., Yongsung, K., & Saro, L. (2014). Groundwater productivity potential mapping using evidential belief function. Groundwater–Focus Issue 2014, 52, 201–207.

    CAS  Google Scholar 

  • Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22, 643–662. doi:10.1007/s10040-013-1089-6.

    Article  Google Scholar 

  • Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computational Geosciences, 51, 350–365. doi:10.1016/ j.cageo.2012.08.023.

  • Pradhan, B., Neshat, A., Pirasteh, S., & Shafri, H. Z. M. (2013). Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area. Iran. Environ Earth Sci. doi:10.1007/s12665-013-2690-7.

  • Prasad, R. K., Mondal, N. C., Banerjec, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential of groundwater zones in hardrock through application of GIS. Environmental Geology, 55, 467–475.

    Article  Google Scholar 

  • Rajabi, M., Mansourian, A., Pilesjo, P., Hedefalk,F., Groth, R., & Bazmani, A. (2014). Comparing Knowledge-Driven and Data-Driven Modeling methods for susceptibility mapping in spatial epidemiology: a case study in Visceral Leishmaniasis. In: Huerta, Schade, Granell (eds): Connecting a Digital Europe through Location and Place. Proceedings of the AGILE’2014 International Conference on Geographic Information Science, Castellón, June, 3–6.

  • Rao, Y. S., & Jugran, D. K. (2003). Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrological Sciences Journal, 48(5), 821–833.

    Article  Google Scholar 

  • Roscoe, M. C. (1990). Handbook of ground water development (pp. 34–51). New York: Wiley.

    Book  Google Scholar 

  • Samsudin, A.R., Bahaa-eldin, E.A.R., Yaaco, W.Z.W., & Hamzah, U. (2006). Mapping of contamination plumes at municipal solid waste disposal sites using geoelectric imaging technique: case studies in Malaysia. Journal of Spatial Hydrology. 6, (2). Fall 2006.

  • Samsudin, B. T., Samira, I., & Roslan, H. (2010). Mapping of salt-water intrusion by geoelectrical imaging in Carey Island. Sidi Fredj, Algiers: A paper presented at the 5th International Symposium on Hydrocarbons & Chemistry (ISHC5) May the 23rd to 25th, 2010.

    Google Scholar 

  • Sener, E., Davraz, A., & Ozcelik, M. (2005). An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeology Journal, 13, 826–834.

    Article  Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence. Princeton, NJ: Princeton Univ. Press 297 pp.

    Google Scholar 

  • Shahid, S., Nath, S. K., & Ray, J. (2000). Groundwater potential modeling in softrock using a GIS. International Journal of Remote Sensing, 21(9), 1919–1924.

    Article  Google Scholar 

  • Shahid, S., & Nath, SK. (2002). GIS integration of remote sensing and electrical sounding data for hydrogeological exploration. J Spat Hydrol 2(1), 1–10.

  • Shahid, S., Sattar, G. S., & Keramat, M. (2014a). Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh. Applied Water Science. doi:10.1007/s13201-014-0203-9.

  • Shahid, S., Nath, S. K., & Kamal, A. S. (2014b). GIS integration of remote sensing and topographic data using fuzzy logic for ground water assessment in Midnapur District, India. Geocarto International, 17, 69–74. doi:10.1080/10106040208.

    Article  Google Scholar 

  • Sikdar, P. K., Chakraborty, S., Adhya, E., & Paul, P. K. (2004). Land use/ land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal: a GIS and remote sensing approach. Journal of Spatial Hydrology, 4(2), 1–24.

    Google Scholar 

  • Solomon, S., & Quiel, F. (2006). Groundwater study using remote sensing and geographic information system (GIS) in the central highlands of Eritrea. Hydrogeology Journal, 14(5), 729–741.

    Article  CAS  Google Scholar 

  • Sreedevi, P. D., Subrahmanyam, K., & Ahmed, S. (2005). Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Kuddapah District, Andhra Pradesh, India. Hydrogeology Journal, 13, 534–545.

    Article  CAS  Google Scholar 

  • Srivastava, P. K., & Bhattacharya, A. K. (2007). Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. International Journal of Remote Sensing, 27(20), 4599–4620. doi:10.1080/01431160600554983.

    Article  Google Scholar 

  • Tangestani, M. H. (2009). A comparative study of Dempster–Shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW Iran. Journal of Asian Earth Sciences, 35(1), 66–73. doi:10.1016/j.jseaes.2009.01.002.

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2002). The use of Dempster–Shafer model and GIS in integration of geoscientific data for porphyry copper potential mapping, north of Shahr-e-Babak, Iran. International Journal of Applied Earth Observation and Geoinformation, 4(1), 65–74.

    Article  Google Scholar 

  • Tizro, T. A., Voudouris, K. S., & Mashayekhi, M. S. (2010). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeology Journal, 18, 917–929. doi:10.1007/ s10040-010-0580-6.

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed.pp. 111–163). New York: Wiley.

    Google Scholar 

  • Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology. NewYork: Wiley.

    Google Scholar 

Download references

Acknowledgements

This project was conducted using the financial support from RUI (Investigation of the impacts of summertime monsoon circulation to aerosol transportation and distribution in Southeast Asia, which can lead to global climate change, 1001/PFIZIK/811228). The authors are also grateful to Universiti Sains Malaysia for providing a 1-year, post-doctoral fellowship to Dr. Kehinde Anthony Mogaji (BW001607). Special appreciation also goes to the Federal University of Technology Akure, Nigeria, for granting the author a study leave to utilize the fellowship for research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehinde Anthony Mogaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogaji, K.A., Lim, H.S. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology. Environ Monit Assess 189, 321 (2017). https://doi.org/10.1007/s10661-017-5990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5990-7

Keywords

Navigation