Skip to main content

Advertisement

Log in

Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 , macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar, F. C., Ferreira, M. T., Albuquerque, A., Rodríguez-González, P., & Segurado, P. (2009). Structural and functional responses of riparian vegetation to human disturbance: performance and spatial scale-dependence. Fundamental and Applied Limnology, 175, 249–267.

    Article  Google Scholar 

  • Aguiar, F. C., & Ferreira, M. T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation, 32, 30–41.

    Article  Google Scholar 

  • Alam, K., Rolfe, J., & Donaghy, P. (2006). Economic and social impact assessment of water quality improvement. Australasian Journal of Regional Studies, 12(1), 85–102.

    Google Scholar 

  • APHA. (2005). Standard methods (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Azyana, Y., & Nik Norulaini, N. A. (2012). The entire catchment and site buffer radii landscape variables, urban land use as predictors of water quality variation. International Journal of Environmental Science and Development, 3(2), 3462–3472.

    Google Scholar 

  • Bandara, D., & Thiruchelvam, S. (2008). Factors affecting the choice of soil conservation practices adopted by potato farmers in Nuwara Eliya Distrct, Sri Lanka. Tropical Agricultural Research and Extension, 11, 49–54.

    Google Scholar 

  • Barbour, M.T., Gerritsen, J., Snyder, B.D. & Stribling, J.B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinveretebrates and fish. Second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water, Washington, D.C

  • Barling, R. D., & Moore, I. D. (1994). Role of buffer strips in management of waterway pollution: a review. Environment Management, 8, 543–558.

    Article  Google Scholar 

  • Behmer, D. J., & Hawkins, C. P. (1986). Effects of overhead canopy on macroinvertebrate production in a Utah stream. Freshwater Biology, 16(3), 287–300.

    Article  Google Scholar 

  • Belmar, O., Bruno, D., Martínez-Capel, F., Barquín, J., & Velasco, J. (2013). Effects of flow regime alteration on fluvial habitats and riparian quality in a semiarid Mediterranean region. Ecological Indicators., 30, 52–64.

    Article  Google Scholar 

  • Boyero, L. (2003). Multiscale patterns of spatial variation in stream macroinvertebrate communities. Ecological Restoration, 18, 365–379.

    Article  Google Scholar 

  • Brooks, A. P., Brierley, G. J., & Miller, R. G. (2003). The long-term control of vegetation and woody debris on channel and flood-plain evolution: insights from a paired catchment study in southeastern Australia. Geomorphology, 51, 7–29.

    Article  Google Scholar 

  • Bruno, D., Belmar, O., Sánchez-Fernández, D., Guareschi, S., Millán, A., & Velasco, J. (2014). Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecological Indicators, 45, 456–464.

    Article  Google Scholar 

  • Armijos, C. I., Adrián, L., Hans-Georg, F., Henrietta, H., & Lutz, B. (2014). Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams? PloS One, 22-9(8), e105869. doi:10.1371/journal.pone.0105869.

    Article  Google Scholar 

  • Chutter, F. M. (1969). The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia, 34, 57–76.

    Article  Google Scholar 

  • Close, M. E., & Davies-Colley, R. J. (1990). Base flow chemistry in New Zealand rivers 2: influence of environmental factors. New Zealand Journal of Marine and Freshwater Research, 24, 343–356.

    Article  CAS  Google Scholar 

  • Cooper, A. B. (1990). Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia, 202, 13–26.

    Article  CAS  Google Scholar 

  • Cooper, C. M. (1987). Benthos in Bear Creek, Mississippi: effects of habitat variation and agricultural sediments. Journal of Freshwater Ecology, 4, 101–114.

    Article  CAS  Google Scholar 

  • Cranston, P. (1996). Identification guide to the Chironomidae of New South Wales: AWT identification guide number 1. West Ryde, NSW: Australian Water Technologies Pty Ltd.

    Google Scholar 

  • CSIRO. (1999). Interactive guide to Australian aquatic invertebrates, CD ROM. 2nd edn. Australia: CSIRO Publishing.

    Google Scholar 

  • Davies-Coolley, R. J., & Rutherford, J. C. (2005). Some approaches for measuring and modelling riparian shade. Ecological Engineering, 24, 525–530.

    Article  Google Scholar 

  • Dean, J. C. & Suter, P. J. (1996). Mayfly nymphs of Australia: a guide to genera. Identification Guide No.7. Co-operate Research Centre for Freshwater Ecology, Ellis Street, Thurgoona, Albury, NSW, 2640

  • Death, R. G., & Winterbourn, M. J. (1995). Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology, 76, 1446–1460.

    Article  Google Scholar 

  • Dolédec, S., Phillips, N., & Townsend, C. (2011). Invertebrate community responses to land use at a broad spatial scale: trait and taxonomic measures compared in New Zealand rivers. Freshwater Biology, 56, 1670–1688.

    Article  Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., & Stiassny, M. L. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163–182.

    Article  Google Scholar 

  • Elosegi, A. J., D’iez, R., & Mutz, M. (2010). Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia, 657, 199–215.

    Article  Google Scholar 

  • Fernandes, M. R., Aguiar, F. C., & Ferreira, M. T. (2011). Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape and Urban Planning, 99, 166–177.

    Article  Google Scholar 

  • Ferreira, M. T., & Aguiar, F. C. (2006). Riparian and aquatic vegetation in Mediterranean type streams (Western Iberia). Limnetica, 25, 411–424.

    Google Scholar 

  • Fitzpatrick, F. A., Scudder, B. C., Lenz, B. N., & Sullivan, D. J. (1998). Revised methods for characterizing stream habitat in the National Water-Quality Assessment Program. Raleigh, NC: Water-Resources Investigations Report 98-4052, U.S. Geological Survey.

    Google Scholar 

  • Gage, M. S., Spivak, A., & Paradire, C. J. (2004). Effect of land use and disturbance on benthic insects in headwater streams draining small watershed north of Charlotte, NC. Southwest Naturalist, 3, 345–358.

    Article  Google Scholar 

  • Giling, D. P., Nally, R. M., & Thompson, R. M. (2014). How sensitive are invertebrates to riparian-zone replanting in stream ecosystems? Marine and Freshwater Research, 67(10), 1500–1511. doi:10.1071/MF14360.

    Article  Google Scholar 

  • Gooderham, J., & Tsyrlin, E. (2002). The waterbug book: a guide to the freshwater macroinvertebrates of temperate Australia. Australia: CSIRO Publishing.

    Google Scholar 

  • Hallberg, G. R. (1989). Nitrate in groundwater in the United States. In R. F. Follet (Ed.), Nitrogen management and groundwater protection (pp. 35–74). Amsterdam: Elsever publishers.

    Chapter  Google Scholar 

  • Harding, J. S., & Winterbourn, M. J. (1995). Effects of contrasting land use on physico-chemical conditions and benthic assemblages of streams in a Canterbury (South Island, New Zealand) river system. New Zealand Journal of Marine and Freshwater Research, 29(4), 479–492.

    Article  CAS  Google Scholar 

  • Hawking, J. H. & Theischinger, G. (1999). Dragonfly larvae (Odonata): a guide to the identification of larvae of Australian families and to the identification and ecology of larvae from New South Wales. Cooperative Research Centre for Freshwater Ecology

  • Hauer, F. R., & Lamberti, G. A. (1996). Methods in stream ecology. San Diego, California: Academic.

    Google Scholar 

  • Hemphill, N., & Cooper, S. D. (1983). The effect of physical disturbance on the relative abundances of two filter-feeding insects in a small stream. Oecologia, 58(3), 378–382.

    Article  Google Scholar 

  • Hewawasam, T., von Blanckenburg, F., Schaller, M., & Kubik, P. (2003). Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology, 31(7), 597–600.

    Article  Google Scholar 

  • Hewawasam, T. (2010). Effect of land use in the upper Mahaweli catchment area on erosion, landslides and siltation in hydropower reservoirs of Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 38(1), 3–14.

    Article  Google Scholar 

  • Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20(1), 31–40.

    Google Scholar 

  • Hunsaker, C. T., & Levine, D. A. (1995). Hierarchical approaches to the study of water quality in rivers. Bioscience, 45, 193–203.

    Article  Google Scholar 

  • IBM SPSS (2016) (Statistical Package for Social Sciences) Statistics for Windows, version 20.0. Armonk, NY: IBM Corp.

  • Jayawardana, J. M. C. K., & Westbrooke, M. (2010). Potential effects of riparian vegetation changes on functional organisation of macroinvertebrates in central Victorian streams. The Victorian Naturalist, 127, 36–48.

    Google Scholar 

  • Jayawardana, J. M. C. K., Westbrooke, M., Wilson, M., & Hurst, C. (2006a). Macroinvertebrate communities in willow (Salix spp.) and reed beds (Phragmites australis) in central Victorian streams in Australia. Marine and Freshwater Research, 57(4), 429–439.

    Article  Google Scholar 

  • Jayawardana, J. M. C. K., Westbrooke, M., Wilson, M., & Hurst, C. (2006b). Macroinvertebrate communities in Phragmites australis (Cav.) Trin. ex Steud. reed beds and open bank habitats in central Victorian streams in Australia. sHydrobiologia, 568(1), 169–185.

    Article  Google Scholar 

  • Jayawardana, J. M. C. K., Westbrooke, M., & Wilson, M. (2010). Leaf litter decomposition and utilisation by macroinvertebrates in a central Victorian river in Australia. The Victorian Naturalist, 127(4), 93–106.

    Google Scholar 

  • Johnson, R. K., Wiederholm, T., & Rosenberg, D. M. (1993). Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. Freshwater Biomonitoringand Benthic macroinvertebrates. New York: Chapman and Hall. pp., 40–158.

  • Johnson, R. K., Furse, M. T., Hering, D., & Sandin, L. (2007). Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshwater Biology, 52, 939–958.

    Article  Google Scholar 

  • Johnson, L. B., Richards, C., Host, G., & Arthur, J. W. (1997). Landscape influences on water chemistry in Midwest stream ecosystems. Freshwater Biology, 37, 193–208.

    Article  CAS  Google Scholar 

  • Jury, W.A. & Nielsen, D.R. (1989). Nitrate transport of nitrogen and leaching mechanism. In: R.F. Follet, (Ed.), Nitrogen management and groundwater protection (pp 139–157), Elsevier, New York, USA

  • Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: better biological monitoring. Washington, DC: Island Press.

    Google Scholar 

  • Keeney, D. R. (1986). Sources of nitrate to ground water. CRC, Critical Reviews in Environment Control, 16, 257–304.

    Article  CAS  Google Scholar 

  • Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69, 1–24.

    Article  Google Scholar 

  • Lenat, D. R. (1993). A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. Journal of the North American Benthological Society, 12, 279–290.

    Article  Google Scholar 

  • Lencioni, V., Marziali, L., & Rossaro, B. (2012). Chironomids as bioindicators of environmental quality in mountain springs. Freshwater Science, 31(2), 525–541.

    Article  Google Scholar 

  • Marzin, A., Verdonschot, P. F., & Pont, D. (2013). The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia, 704, 375–388.

    Article  Google Scholar 

  • Mazlum, N., Özer, A., & Mazlum, S. (1999). Interpretation of water quality data by principal components analysis. Turkish Journal of Engineering and Environmental Sciences, 23(1), 19–26.

    CAS  Google Scholar 

  • McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, 82(1), 290–297.

    Article  Google Scholar 

  • Mendis A. S. & Fernando, C. H. (2002). A guide to the freshwater fauna of Ceylon. In: Fernando C.H. and Weerewardhena S.R (Eds. ) Sri Lanka freshwater fauna and fisheries pp51–59.

  • Metcalf & Eddy, Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering, treatment and reuse (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Merritt, R.W., Cummins, K.W. & Burton, T.M. (1984). The role of aquatic insects in the processing and cycling of nutrients. In: V.H. Resh, and D.M. Rosenberg, (Eds.) The ecology of aquatic insects. Praeger Scientific, New York

  • Muirhead-Thomson, R. C. (1987). Pesticide impact on stream fauna: with special reference to macroinvertebrates. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Muller, I., Delisle, M., & Ollitrault, M. (2016). Responses of riparian plant communities and water quality after 8 years of passive ecological restoration using a BACI design. Hydrobiologia, 781, 67–79. doi:10.1007/s10750-015-2349-3.

    Article  Google Scholar 

  • Muscutt, A. D., Harris, G. L., Bailey, S. W., & Davies, D. B. (1993). Buffer zones to improve water quality: a review of their potential use in UK agriculture. Agriculture, Ecosystems & Environment, 45, 59–77.

    Article  CAS  Google Scholar 

  • Omernik, J.M. (1977). Nonpoint source- stream nutrient level relationships: a nationwide study. US EPA—600/3-77-105; Corvallis, Oregon

  • Paller, M. H., Sterrett, S. C., Tuberville, T. D., Fletcher, D. E., & Andrew, M. G. (2014). Effects of disturbance at two spatial scales on macroinvertebrate and fish metrics of stream health. Journal of Freshwater Ecology, 29(1), 83–100.

    Article  Google Scholar 

  • Panabokke, C. (1996). Soils and agro-ecological environments of Sri Lanka. In Natural resources series 2 (p. 220). Colombo: Energy and Science Authority.

    Google Scholar 

  • Palmer, C., O'keeffe, J., & Palmer, A. (2006). Macroinvertebrate functional feeding groups in the middle and lower reaches of the Buffalo river, eastern Cape, South Africa. II. Functional morphology and behaviour. Freshwater Biology, 29(3), 455–462.

    Article  Google Scholar 

  • Park, S-R., Lee, H-J., Lee, S-W., Hwang, S-J., Byeon, M-S., Joo, G-J., et al. (2011). Relationships between land use and multi-dimensional characteristics of streams and rivers at two different scales. Annales de Limnologie - International Journal of Limnology, 47, S107–S116. doi:10.1051/limn/2011023.

  • Peterjohn, W. T., & Correll, D. L. (1984). Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology, 65, 1466–1475.

    Article  CAS  Google Scholar 

  • Pinder, A. M. & Brinkhurst, R. O. (1994). A preliminary guide to the identification of the microdrileologochaeta of Australian inland water. Identification Guide No.1 (CRCFE: Albury, NSW, Australia.)

  • Pionke, H.B. & Lowrance, R.R. (1991). Fate of nitrate in subsurface drainage waters In: R.F. Folle, D.R. Keeney and R.M. Cruse, (Eds.) Managing nitrogen for groundwater quality and farm profitability, SSSA, Madison; WI

  • Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K. & Hughes, R. M. (1989). Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. Wahington: US Environ. Prot. Agency

  • Platts, W. S., Megahan, W. F., & Minshall, W. G. (1983). Methods for evaluating stream, riparian, and biotic conditions. In General technical report INT-138, USDA Forest Service. Ogden, UT: Rocky Mountain Research Station.

    Google Scholar 

  • Poff, N. L., & Ward, J. (1990). Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management, 14(5), 629–645.

    Article  Google Scholar 

  • Quinn, J. M., Cooper, A. B., Davies-Colley, R. J., Rutherford, J. C., & Williamson, R. B. (1997). Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. New Zealand Journal of Marine and Freshwater Research, 31(5), 579–597.

    Article  CAS  Google Scholar 

  • Quinn, J. M., Steele, G. L., Hickey, C. W., & Vickers, M. L. (1994). Upper thermal tolerances of twelve common New Zealand stream invertebrate species. New Zealand Journal of Marine and Freshwater Research, 28, 391–397.

    Article  Google Scholar 

  • Richards, C., Johnson, L. B., & Host, G. E. (1996). Landscape-scale influences on stream habitats and biota. Canadian Journal of Fisheries and Aquatic Sciences, 53(S1), 295–311.

    Article  Google Scholar 

  • Richards, C., Haro, R. J., Johnson, L. B., & Host, G. E. (1997). Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 37, 219–230.

    Article  Google Scholar 

  • Robinson, C. A., Ghaffarzadeh, M., & Cruse, R. M. (1996). Vegetative filter strip effects on sediment concentration in cropland runoff. Journal of Soil and Water Conservation, 50, 227–230.

  • Southwood, T. (1977). Habitat, the templet for ecological strategies? The Journal of Animal Ecology, 46, 337–365.

    Article  Google Scholar 

  • Sponseller, R., Benfield, E., & Valett, H. (2001). Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology, 46(10), 1409–1424.

    Article  Google Scholar 

  • T’anago, M. G., & Jal’on, D. G. (2011). Riparian quality index (RQI): a methodology for characterising and assessing the environmental conditions of riparian zones. Limnetica, 30(2), 235–254.

    Google Scholar 

  • Theodoropoulos, C., Aspridis, D., & Iliopoulou, G. (2015). The influence of land use on freshwater macroinvertebrates in a regulated and temporary Mediterranean river network. Hydrobiologia, 751, 201–213. doi:10.1007/s10750-015-2187-3.

    Article  Google Scholar 

  • Törnblom, J., Angelstam, P., Degerman, E., Henrikson, L., Edman, T., & Temnerud, J. (2011). Catchment land cover as a proxy for macroinvertebrate assemblage structure in Carpathian Mountain streams. Hydrobiologia, 673, 153–168.

    Article  Google Scholar 

  • Valente-Neto, F., Koroiva, R., & Fonseca-Gessner, A. A. (2015). The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquatic Ecology, 49(1), 115–125. doi:10.1007/s10452-015-9510-y.

    Article  CAS  Google Scholar 

  • Wallace, J. B., Grubaugh, J. W., & Whiles, M. R. (1996). Biotic indices and stream ecosystem processes: results from an experimental study. Ecological Applications, 6(1), 140–151.

    Article  Google Scholar 

  • Waters, T. F. (1995). Sediment in streams: sources, biological effects and control. In American fisheries society monograph 7. Bethesda, Maryland: American Fisheries Society.

    Google Scholar 

  • Yu, H. H., Lin, Y. P., & Wang, C. L. (2011). Monitoring and estimating scale dependent hierarchical relationships between Sicyopterus japonicus density and stream habitat features in different seasons in northern Taiwan. Environmental Monitoring and Assessment, 182, 171–186.

    Article  Google Scholar 

  • Zhenyao, S., Hou, X., Li, W., & Gong, Y. (2015). Impact of landscape pattern at multiple spatial scales on water quality: a case study in a typical urbanised watershed in China. Ecological Indicators, 48, 417–427.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by National Research Council (NRC) of Sri Lanka Grant No. 13-160 for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M.C.K. Jayawardana.

Appendices

Appendix 1

Table 7 Mean and the range of water quality and macroinvertebrate indices at sampling sites

Appendix 2

Table 8 Taxa recorded in sampling sites during wet and dry seasons

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayawardana, J., Gunawardana, W., Udayakumara, E. et al. Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Environ Monit Assess 189, 192 (2017). https://doi.org/10.1007/s10661-017-5863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5863-0

Keywords

Navigation