Skip to main content

Advertisement

Log in

Concentrations of potentially toxic elements in soils and vegetables from the macroregion of São Paulo, Brazil: availability for plant uptake

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The occurrence and accumulation of heavy metals or so-called potentially toxic elements (PTEs) in soils and plants have driven long-standing concerns about the adverse effects such metals have on the environment and human health. Furthermore, contaminated food products are known to be a leading source of exposure to heavy metals for the general population. It is crucial to accurately assess the concentrations of metals in crops and the bioavailable contents of these elements in the soil. The state of São Paulo is the largest consumer market of horticultural products in Brazil with production focused essentially on urban and industrial areas, which greatly increases the degree of exposure to contaminants. The objective of the authors in this study was to evaluate the soil-plant relationships between concentrations of Cd, Cu, Ni, Pb and Zn in vegetable and garden soils in the state of São Paulo, Brazil. To accomplish this, 200 soil (0–20 cm) and plant samples were collected from 25 species in the production areas. With the exception of Cd, there was positive correlation between pseudototals (USEPA 3051a) and bioavailable contents (extracted with DTPA) of heavy metals. However, the Cd and Pb contents in plants were not significantly correlated with any of the variables studied. All random forest and tree models proved to be good predictors of results generated from a regression model and provided useful information including covariates that were important for specifically forecasting Zn concentration in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu, C. A., Abreu, M. F., & Andrade, J. C. (2001). Determination of copper, iron, manganese, zinc, cadmium, chromium, nickel and lead in soil using the solution of DTPA pH 7,3. In B. van Raij, J. C. Andrade, H. Cantarella, & J. A. Quaggio (Eds.), Chemical analysis to evaluate the fertility of tropical soils (pp. 240–250). Campinas: Instituto Agronômico (in Portuguese).

    Google Scholar 

  • Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soil of urban areas. Water Air, and Soil Pollution, 213, 121–143.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils (p. 339). Glasgow: Blackie Academic & Professional.

    Google Scholar 

  • Alloway, B. J. (2008). Zinc in soils and crop nutrition. Second edition, published by IZA and IFA Brussels, Belgium and Paris, France, p. 45.

  • Anderson, J. M., & Ingram, J. S. I. (1992). Tropical soil biology and fertility: a handbook of methods. Wallingford: CAB International.

    Google Scholar 

  • ANVISA—Agência Nacional de Vigilância Sanitária. Decreto no 55.871, de 26 de março de 1965. Disponível em: http://www.anvisa.gov.br/legis/decretos/55871_65.htm. Accessed in 17 Aug 2013.

  • Araújo, G. C. L., Gonzalez, M. H., Ferreira, A. G., Nogueira, A. R. A., & Nóbrega, J. A. (2002). Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials. Spectrochimica Acta part B: Atomic Spectroscopy, Oxford, 57, p. 2121–2132.

  • Barber, S. A. (1995). Soil nutrient bioavailability: a mechanistic approach (2nd ed., p. 414). New York: Wiley.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Breiman L. (2011). Random forests, Machine Learning, 45, 5–32.

  • Camargo, A. M. M. P. (2008a). Geographical distribution of vegetable production in the State of São Paulo. Informações Econômicas, São Paulo, v. 38, n.1, p.28–35. (in Portuguese).

  • Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3), 513–524.

    Article  CAS  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water, Air, and Soil Pollution, 182, 245–261.

    Article  CAS  Google Scholar 

  • Companhia De Tecnologia De Saneamento Ambiental - CETESB, SÃO PAULO. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo - 2005, em substituição aos Valores Orientadores de 2001, e dá outras providências. Diário Oficial do Estado. Secretaria do Meio Ambiente, São Paulo, 115(227). p. 22-23. Retificação 13.12.2005, 115(233) p.42. (Technical Report). (In Portuguese)

  • Companhia De Tecnologia De Saneamento Ambiental. Establishment report of guiding values for soil and groundwater in São Paulo. São Paulo: Cetesb, 2001. 247p. (Technical Report). (in Portuguese).

  • Conselho Nacional Do Meio Ambiente. Resolução n° 420 de 28 de Dezembro de 2009. Rules on criteria and guiding soil quality values for the presence of chemical substances and establishes guidelines for environmental management of areas contaminated by these substances as a result of human activities. Brasilia, 2009, published in the Official Gazette of 30 December 2009. Available at: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. Accessed in: 05 Dec 2013. (in Portuguese)

  • Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 11, 2783–2792.

    Article  Google Scholar 

  • R Development Core Team (2008). An introduction to R. http://www.r-project.org/.

  • Empresa Brasileira De Pesquisa Agropecuária—Embrapa. National Research Center for Vegetables (2009). Available at: http://www.cnph.embrapa.br. Accessed in 05 Dec 2011. (in Portuguese).

  • Fernandes, R. B. A., Luz, V. W., Fontes, M. P. F., & Fontes, L. E. F. (2007). Evaluation of the concentration of heavy metals in crops in the state of Minas Gerais. Journal of Agricultural and Environmental Engineering, 11(1), pp. 81–93. (in Portuguese).

  • Fontes, M. P. F., & Weed, S. B. (1991). Iron oxides in selected Brazilian oxisols: I. Mineralogy. Soil Science Society of America Journal, Madison 55, 1143–1150.

  • Fortin, D., Leppard, G. G., & Tessier, A. (1993). Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochimica Cosmochimica Acta, London, 57, pp. 4391–4404.

  • Gee, G. W., & Or, D. (2002). Particle-size analysis. In: Dane, J.H., & Toop, G.C. (Ed.).Methods of soil analysis. Madison; Physical methods, pp. 255–293.

  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27, 294–300.

    Article  Google Scholar 

  • Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60.

    CAS  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference and prediction, 2 ed., Springer, pp. 587–604.

  • Instituto Brasileiro De Geografia E Estatística. Estimativa IBGE 2013. 2008–2009. IBGE, Rio de Janeiro, Brasil. Página visitada em 03 de março de 2014.

  • Intawongse, M., & Dean, J. (2006). Uptake of potentially toxic metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives and Contaminants, 23, 36–48.

    Article  CAS  Google Scholar 

  • Itanna, F. (2002). Metals in leafy vegetables grown in Addis Ababa and toxicological implications. Ethiopian Journal of Health Development, 6, 295–302.

    Google Scholar 

  • Kalis, E. J. J., Temminghoff, E. J. M., Visser, A., Van Riemsdijk, W. H. (2007). Metal uptake by Lolium perenne in contaminated soils using a four-step approach. Environmental Toxicology and Chemistry. New York, v. 26, pp. 335–45.

  • Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate induced range shifts: model differences and model reliability. Global Change Biology, 12, 1568–1584.

    Article  Google Scholar 

  • Lawrence, R. L., Wood, S. D., & Sheley, R. L. (2006). Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of Environment, 100, 356–362.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.

    Google Scholar 

  • Loeppert, R. L., & Inskeep, W. P. (1996). Iron. In: J.M. Bigham (Ed.). Methods of soil analysis. Madison: Soil Science Society of America; American Society of Agronomy, cap.24, pt 3. pp. 639–664.

  • Madrid, F., Reinoso, R., Florido, M. C., Díaz Barrientos, E., Ajmone-Marsan, F., Davidson, C. M., & Madrid, L. (2007). Estimating the extractability of potentially toxic elements in urban soils: a comparison of several extracting solutions. Environmental Pollution, 147, 713–722.

    Article  CAS  Google Scholar 

  • Manly, B. F. J. (1994). Multivariate statistical methods (2nd ed., p. 215). London: Chapman & Hall.

    Google Scholar 

  • Mckenzie, R. M. (1979). Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide. Geochemicha et Cosmochimica Acta, 43, 1855–1857.

    Article  CAS  Google Scholar 

  • Mehra, J. A., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionite–citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 5, 317–327.

    Google Scholar 

  • Melo, L. C. A., Alleoni, L. R. F., & Swartjes, F. A. (2011). Derivation of critical soil cadmium concentrations for the state of São Paulo, Brazil, based on human health risks. Atlanta: Human and Ecological Risk Assessment, v. 17, pp. 1124–1141.

  • Peijnenburg, W., Baerselman, R., De Groot, A., Jager, T., Leenders, D., Posthuma, L., & Van Veen, R. (2000). Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Archives of Environmental Contamination and Toxicology, 39, 420–430.

    Article  CAS  Google Scholar 

  • Peters, J., Verhoest, N. E. C., Samson, R., Boeckx, P., & De Baets, B. (2008). Wetland vegetation distribution modeling for the identification of constraining environmental variables. Landscape Ecology, 23, 1049–1065.

    Article  Google Scholar 

  • Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: bagging and random forests for ecologic prediction. Ecosystems, 9, 181–199.

    Article  Google Scholar 

  • Rhoton, F. E. (2000). Influence of time on soil response to no-till practices. Soil Science Society of America, 64, 700–709.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. S., Ashmore, M. R., Farago, M. E., & Thornton, I. (2006). The influence of soil characteristics on the extractability of Cd, Pb and Zn in upland and moorland soils. Science of the Total Environment, 366, 864–875.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Henriques, B., Ferreira Da Silva, E., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: part I e the role of key soil properties in the variation of contaminants reactivity. Chemosphere, 81, 1549–1559.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Cruz, N., Coelho, C., Henriques, B., Carvalho, L., Duarte, A. C., Pereira, M. E., & Römkens, P. F. A. M. (2013). Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental Pollution, 183, 234–242.

    Article  CAS  Google Scholar 

  • Römkens, P. F. A. M., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009a). Characterization of soil metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. Journal of Soil and Sediments, 9(3), 216–289.

    Article  Google Scholar 

  • Römkens, P. F. A. M., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009b). Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 3, 216–228.

    Article  Google Scholar 

  • Sauvé, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 7, 1125–1131.

    Article  Google Scholar 

  • Statistical Yearbook Of The People’s Republic Of China, National Bureau of Statistics of the People’s Republic of China (2011), http://www.stats.gov.cn/tjsj/Ndsj/2011/indexch.htm.

  • Statsoft (2005). Statistica 7.0 software. Tucksa, USA: StatSoft.

  • Sterckeman, T., Duquene, L., Perriguey, J., & Morel, J. L. (2005). Quantifying the effect of rhizosphere processes on the availability of soil cadmium and zinc. Plant and Soil, 276, 335–345.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. Chemical equilibria and rates in natural waters. 3rd ed. New York: Wiley, 1022.

  • Swartjes, F. A., Dirven-Van Breemen, E. M., Otte, P. F., Van Beelen, P., Rikken, M. G. J., Tuinstra, J., Spijker, J., Lijzen, J. P. A. (2007). Human health risks due to consumption of vegetables from contaminated sites. Bilthoven, the Netherlands: RIVM. (RIVM report 711701040).

  • Szolnoki, Z., Farsang, A., et al. (2013). Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals. Environmental Pollution, 177, 106–115.

    Article  CAS  Google Scholar 

  • Tessier, A., Fortin, D., Belzile, N., Devitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between .eld and laboratory measurements. Geochimica et Cosmochimica Acta, 60(3), 387–404.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency—USEPA. Method 3051a—Microwave assisted acid digestion of sediments, sludges, soils, and oils. 1998. Available at: http://www.epa.gov/SW-846/pdfs/3051a.pdf. Accessed in 13 Dec 2011.

  • Valarini, P. J., Diaz Alvarez, M., Gascó, J. M., Guerrero, F., & Tokeshi, H. (2002). Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms. Brazilian Journal of Microbiology, 33, 53–58.

    Article  Google Scholar 

  • van Raij, B. (2011). Soil fertility and nutrient management. Piracicaba: International Plant Nutrition Institute, p. 420. (in Portuguese).

  • Wu, J., Hd, L., Duan, X. Y., Ding, Y., Wu, H. T., Yf, B., & Sun, X. (2009). Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics, 25, 30–35.

    Article  CAS  Google Scholar 

  • Yang, X.-E., Chen, W.-R., & Feng, Y. (2007). Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environmental Geochemistry and Health, 29, 413–428.

    Article  CAS  Google Scholar 

  • Yu, T. R. (1997). Chemistry of variable charge soils (p. 505). New York: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant No 2012/03682-2 and 2013/08579-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Novaes dos Santos-Araujo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos-Araujo, S.N., Alleoni, L.R.F. Concentrations of potentially toxic elements in soils and vegetables from the macroregion of São Paulo, Brazil: availability for plant uptake. Environ Monit Assess 188, 92 (2016). https://doi.org/10.1007/s10661-016-5100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5100-2

Keywords

Navigation