Skip to main content
Log in

The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study was conducted to evaluate the potentiality of the aquatic macrophyte Pistia stratiotes to accumulate trace metals, perspective of phytoremediation, and the probability for using it as a bioindicator for the different pollution types. Plants were collected from the different Lake Mariut basins (main basin, south-west, north-west, and fish farm), through five quadrats each, for measuring some growth parameters such as plant density, rosette diameter and height, root length, number of living and dead leaves per individual, and leaf length and width. In addition, nutrients and heavy metals in plant organs as well as water samples were analyzed. The bioaccumulation and translocation factors of trace metals were calculated. Water physicochemical data of Lake Mariut showed significant variations of all variables, except temperature and pH as well as Cd metal, among the lake basins. Fish farm was characterized by the highest plant density, individual size, biomass, and the number of living leaves, while the north-west basin had the lowest, except the number of dead leaves. In contrast to trace metals, P. stratiotes accumulated concentrations of macronutrients in the leaves higher than in roots. The bioaccumulation factors of the investigated metals, except Cu, were greater than one, while the translocation factors (TFs) of all trace metals were less than unity, and this may render P. stratiotes suitable for rhizofiltration. In addition, the significant positive correlation of Ni and Cd in water with those in plant roots and leaves as well as the growth response of this plant to the different pollutants may suggest its potential use as bioindicator for these pollutants in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adebayo, A. A., Briski, E., Kalaci, O., Hernandez, M., Ghabooli, S., Beric, B., Chan, F. T., Zhan, A., Fifield, E., Leadley, T., & MacIsaac, H. J. (2011). Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) in the Great Lakes: playing with fire? Aquatic Invasions, 6(1), 91–96.

    Article  Google Scholar 

  • Allen, S. E. (1989). Chemical analysis of ecological materials. London: Blackwell Scientific Publications.

    Google Scholar 

  • Alyemeni, M. N., & Almohisen, I. A. A. (2014). Traffic and industrial activities around Riyadh cause the accumulation of heavy metals in legumes: a case study. Saudi Journal of Biological Sciences, 21, 167–172.

    Article  CAS  Google Scholar 

  • Aravindhan, R., Rao, J. R., & Nair, B. U. (2007). Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpascal pelliformis. Journal of Hazardous Materials, 142, 68–76.

    Article  CAS  Google Scholar 

  • Baldantoni, D., Ligrone, R., & Alfani, A. (2009). Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. Journal of Geochemical Exploration, 101, 166–174.

    Article  CAS  Google Scholar 

  • Bonanno, G. (2013). Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicology and Environmental Safety, 97, 124–130.

    Article  CAS  Google Scholar 

  • Chakravarty, P., SenSarma, N., & Sarma, H. P. (2010). Biosorption of cadmium (II) from aqueous solution using heartwood powder of Areca catechu. Chemical Engineering Journal, 162, 949–955.

    Article  CAS  Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1–42.

    Article  Google Scholar 

  • EEAA (2008). Egyptian environmental affairs agency. Annual Report, 360 pp.

  • El-Gharably, Z., Khattab, F. A., & Dubbers, A. A. F. (1982). Experience with grass carps for the control of aquatic weeds in irrigation canals in Egypt. Proc. 2nd Int. Symp. On herbivorous fish (pp. 17–26). the Netherlands: EWRS Wageningen.

    Google Scholar 

  • EPA. (2006). National recommended water quality criteria. Environmental Protection Agency. Washington: Office of Water.

    Google Scholar 

  • Ernst, W. H. O., Verkleij, J. A. C., & Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229–248.

    Article  CAS  Google Scholar 

  • Fawzy, M. A., Badr, N. E., El-Khatib, A., & Abo-El-Kassem, A. (2012). Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environmental Monitoring and Assessment, 184, 1753–1771.

    Article  CAS  Google Scholar 

  • Galal, T. M., & Shehata, H. S. (2014). Evaluation of the invasive macrophyte Myriophyllum spicatum L. as a bioaccumulator for heavy metals in some watercourses of Egypt. Ecological Indicators, 41, 209–214.

    Article  CAS  Google Scholar 

  • Galal, T. M., & Shehata, H. S. (2015a). Impact of nutrients and heavy metals capture by paddy weeds on the growth and production of rice crop (Oryza sativa L.) irrigated with different water sources. Ecological Indicators, 54, 108–115.

    Article  CAS  Google Scholar 

  • Galal, T. M., & Shehata, H. S. (2015b). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244–251.

    Article  CAS  Google Scholar 

  • Galal, T. M., Farahat, E. A., & Fawzy, M. (2008). Submerged macrophytes as bioindicators for pollution in Lake Mariut along the Mediterranean coast of Egypt. Ecologia Mediterranea, 34, 83–91.

    Google Scholar 

  • Goswami, R., Devi, B., & Sarma, K. P. (2009). Comparative study on accumulation of cadmium in three aquatic plants. Journal of Environmental Research and Development, 4(2), 360–364.

    Google Scholar 

  • Gupta, S., Nayek, S., Saha, R. N., & Satpati, S. (2008). Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environmental Geology, 55, 731–739.

    Article  CAS  Google Scholar 

  • Hadi, F., Bano, A., & Fuller, M. P. (2010). The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere, 80, 457–462.

    Article  CAS  Google Scholar 

  • Hadi, F., Hussain, F., Hussain, M., Sanaullah, A. A., Ur Rahman, S., & Ali, N. (2014). Phytoextraction of Pb and Cd; the effect of urea and EDTA on Cannabis sativa growth under metals stress. International Journal of Agronomy and Agricultural Research, 5(3), 30–39.

    Google Scholar 

  • Hu, M. J., Wei, Y. L., Yang, Y. W., & Lee, J. F. (2003). Immobilization of chromium (VI) with debris of aquatic plants. Bulletin of Environmental Contamination and Toxicology, 71, 840–847.

    Article  CAS  Google Scholar 

  • Kamal, M., Ghaly, A. E., Mahmoud, N., & Coté, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.

    Article  CAS  Google Scholar 

  • Keskinkan, O., Goksu, M. Z. L., Yaceer, A., & Basibuyuk, M. (2007). Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Engineering in Life Sciences, 7(2), 192–196.

    Article  CAS  Google Scholar 

  • Khedr, A. A., & Serag, M. S. (1998). Environmental influences on the distribution and abundance of waterlettuce (Pistia stratiotes L.) in Egypt. Limnologica, 28(4), 387–393.

    Google Scholar 

  • Lima, L. K. S., Tosi Pelosi, B., da Silva, M. G. C., & Vieira, M. G. A. (2013). Lead and chromium biosorption by Pistia stratiotes biomass. Chemical Engineering Transaction, 32, 1045–1050.

    Google Scholar 

  • Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic storm waters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17, 84–96.

    Article  CAS  Google Scholar 

  • Maddison, M., Soosaar, K., LÕhmus, K., & Mander, Ü. (2009). The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination, 247, 121–129.

    Google Scholar 

  • Mishima, D., Tateda, M., Ike, M., & Fujita, M. (2006). Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource Technology, 97, 2166–2172.

    Article  CAS  Google Scholar 

  • Nabulo, G., Oryem-Origa, H., & Diamond, M. (2006). Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environmental Research, 101(1), 42–52.

    Article  CAS  Google Scholar 

  • Nanda, S., & Abraham, J. (2013). Remediation of heavy metal contaminated soil. African Journal of Biotechnology, 12(21), 3099–3109.

    CAS  Google Scholar 

  • Reddy, K. R., & DeBusk, W. F. (1985). Nutrient removal potential of selected aquatic macrophytes. Journal of Environmental Quality, 14, 459–462.

    Article  CAS  Google Scholar 

  • Renjini, M. B. J., & Janardhanan, K. (1989). Effect of some heavy metals on seed germination and early growth of ground nut, sunflower and ginger. Geobiosystems, 16, 164–170.

    CAS  Google Scholar 

  • Sadiq, M. (1992). Forest fire ash impact on micro- and macroalgae in the receiving waters of the east coast of South Korea. Marine Pollution Bulletin, 45, 203–209.

    Google Scholar 

  • Šajna, N., Haler, M., Škornik, S. S., & Kaligarič, M. (2007). Survival and expansion of Pistia stratiotes L. in a thermal stream in Slovenia. Aquatic Botany, 87, 75–79.

    Article  Google Scholar 

  • Sasmal, B., & Monda, A. K. (2013). Phyto-sociological studies on Pistia stratiotes L. var. cuneata Engl. (Araceae) in Purba Medinipur District, West Bengal, India. International Journal of Current Research, 5(2), 283–288.

    Google Scholar 

  • Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution, 159, 3560–3570.

    Article  CAS  Google Scholar 

  • Sekabira, K., Oryem-Origa, H., Basamba, T. A., Mutumba, G., & Kakudidi, E. (2010). Assessment of heavy metal pollution in the urban stream sediments and its tributaries. International Journal of Environmental Science and Technology, 7(4), 435–446.

    Article  CAS  Google Scholar 

  • Shaltout, K. H., Hassan, L. M., & Galal, T. M. (2005). Habitat and vegetation of Lake Mariut, Egypt. Assiut University Journal of Botany, 34(2), 309–337.

    Google Scholar 

  • Shaltout, K. H., Galal, T. M., & El-Komy, T. M. (2010). Evaluation of the nutrient status of some hydrophytes in the water courses of Nile Delta, Egypt. Ecologia Mediteranea, 36(1), 77–87.

    Google Scholar 

  • Singh, B. P., & Tandon, P. K. (2009). Effect of water pollution on Pistia stratiotes in river Suheli of Dudhwa National Park and river Gomti of Lucknow city. Researches and Environmental Life Sciences, 2(3), 173–178.

    Google Scholar 

  • Skinner, K., Wright, R., & Porter-Goff, E. (2007). Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution, 145, 234–237.

    Article  CAS  Google Scholar 

  • SPSS. (2006). SPSS base 15.0 user’s guide. Chicago: SPSS Inc.

    Google Scholar 

  • Tewari, A., Singh, R., Singh, N. K., & Rai, U. N. (2008). Amelioration of municipal sludge by Pistia stratiotes L.: role of antioxidant enzymes in detoxification of metals. Bioresources Technology, 99, 8715–8721.

    Article  CAS  Google Scholar 

  • Thilakar, R. J., Rathi, J. J., & Pillai, P. M. (2012). Phytoaccumulation of chromium and copper by Pistia stratiotes L. and Salvinia natans (L.) All. Journal of Natural Products and Plant Resources, 2(6), 725–730.

    CAS  Google Scholar 

  • Weis, J. S., Glover, T., & Weis, P. (2004). Interactions of metals affect their distribution in tissues of Phragmites australis. Environmental Pollution, 131, 409–415.

    Article  CAS  Google Scholar 

  • Xiao, R., Bai, J., Zhang, H., Gao, H., Liua, X., & Wilkes, A. (2011). Changes of P, Ca, Al and Fe contents in fringe marshes along a pedogenic chronosequence in the Pearl River estuary, South China. Continuous Shelf Research, 31, 739–747.

    Article  Google Scholar 

  • Yadav, P., & Srivastava, S. K. (1997). Rating of the effect of cadmium on seed germination and early seedling growth of some crops. Journal of Indian Botanical Society, 76, 241–247.

    Google Scholar 

  • Zhang, C., Qiao, Q., Piper, J. D. A., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159, 3057–3070.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Mohamed Abdullah, Helwan University, for his kind help in laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Galal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galal, T.M., Farahat, E.A. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environ Monit Assess 187, 701 (2015). https://doi.org/10.1007/s10661-015-4941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4941-4

Keywords

Navigation