Skip to main content

Advertisement

Log in

Nutrient concentrations and fluxes in the upper catchment of the Miyun Reservoir, China, and potential nutrient reduction strategies

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Miyun Reservoir is Beijing’s main drinking water source. Increased nutrient levels in the reservoir have resulted in an increased risk of harmful algal blooms. One hundred ten water samples were collected at a range of spatial scales in the upper catchment of the Miyun Reservoir and were analyzed for total nitrogen (TN), nitrate (NO3 -N), ammonium (NH4 +-N), total phosphorus (TP), and the potassium permanganate index (CODMn). Empirical equations were developed from relationships between nutrient concentrations and the main controls on nutrient, and were used to identify parts of the catchment that should be targeted with nutrient load reduction measures. Cropland was the main source of sediment for the streams, and much of the phosphorus was associated with sediment. The annual mean TP concentrations were closely correlated with both the annual mean suspended sediment concentrations and the ratio of the cropland area to the total basin area. There was a linear relationship between the annual mean TN concentration and the population density in the basins. Soil conservation may play an important role in reducing TP concentrations in the upper reaches of the Chao and Bai Rivers. It may be useful to (1) construct natural riparian buffers and vegetated buffers along croplands close to the watercourses, (2) implement management strategies to reduce nitrogen (N) fertilizer applications, and (3) construct additional wetlands to reduce nutrient loads in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berretta, C., & Sansalone, J. (2011). Hydrologic transport and partitioning of phosphorus fractions. Journal of Hydrology, 403, 25–36.

    Article  CAS  Google Scholar 

  • Bowes, M. J., Smith, J. T., & Neal, C. (2009). The value of high-resolution nutrient monitoring: a case study of the river Frome, Dorset, UK. Journal of Hydrology, 378, 82–96.

    Article  CAS  Google Scholar 

  • Chen, D. J., Lu, J., Shen, Y. N., Gong, D. Q., & Deng, O. P. (2013). Spatio-temporal variations of nitrogen in an agricultural watershed in eastern China: Catchment export, stream attenuation and discharge. Journal of Hydrology, 501, 25–34.

    Article  CAS  Google Scholar 

  • Chung, E. G., Bombardelli, F. A., & Schladow, S. G. (2009). Modeling linkages between sediment resuspension and water quality in a shallow, eutrophic, wind-exposed lake. Ecological Modelling, 220, 1251–1265.

    Article  CAS  Google Scholar 

  • Domagalski, J., Lin, C., Luo, Y., Kang, J., Wang, S. M., Brown, L. R., & Munn, M. D. (2007). Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People’s Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen. Agriculture Water Management, 94, 43–53.

    Article  Google Scholar 

  • Dosskey, M. G., Vidon, N. P., Gurwick, N. P., Allan, C. J., Duval, T. P., & Lowrance, R. (2010). The role of riparian vegetation in protecting and improving chemical water quality in streams. Journal of the American Water Resources Association, 46, 261–277.

    Article  CAS  Google Scholar 

  • Du, L. N., Li, Y., Chen, X. Y., & Yang, J. X. (2011). Effect of eutrophication on molluscan community composition in the Lake Dianchi (China, Yunnan). Limnologica, 41, 213–219.

    Article  CAS  Google Scholar 

  • Ekholm, P., & Lehtoranta, J. (2012). Does control of soil erosion inhibit aquatic eutrophication? Journal of Environmental Management, 93, 140–146.

    Article  CAS  Google Scholar 

  • Ellison, M. E., & Brett, M. T. (2006). Particulate phosphorus bio-availability as a function of stream flow and land cover. Water Research, 40, 1258–1268.

    Article  CAS  Google Scholar 

  • Ferreira, J. G., Andersen, J. H., Borja, A., Bricker, S. B., Camp, J., Silva, M. C., Garcés, E., Heiskanen, A. S., Humborg, C., Ignatiades, L., Lancelot, C., Menesguen, A., Tett, P., Hoepffnerm, N., & Claussen, U. (2011). Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuarine, Coastal and Shelf Science, 93, 117–131.

    Article  CAS  Google Scholar 

  • Hefting, M. M., Clement, J. C., Bienkowski, P., Dowrick, D., Guenat, C., Butturini, A., Topa, S., Pinay, G., & Verhoeven, J. T. A. (2005). The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in europe. Ecological Engineering, 24, 465–482.

    Article  Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., & Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8, 3–13.

    Article  CAS  Google Scholar 

  • Jiang, J. Y., Li, S. Y., Hu, J. T., & Huang, J. (2014). A modeling approach to evaluating the impacts of policy-induced land management practices on non-point source pollution: A case study of the Liuxi River watershed, China. Agricultural Water Management, 131, 1–16.

    Article  Google Scholar 

  • Lewitus, A. L., Horner, R. A., Caron, D. A., Mendoza, E. G., Hickey, B. M., Hunter, M., Huppert, D. D., Kudela, R. M., Langlois, G. W., Largier, J. L., Lessard, E. J., RaLonde, R., Rensel, J. J., Strutton, P. G., Trainerm, V. L., & Tweddle, J. F. (2012). Harmful algal blooms along the North American west coast region:History, trends, causes, and impacts. Harmful Algae, 19, 133–159.

    Article  Google Scholar 

  • Li, X. S., Wu, B. F., & Zhang, L. (2013). Dynamic monitoring of soil erosion for upper streams of Miyun Reservoir in the last 30 years. Journal of mountain science, 10(5), 801–811.

    Article  Google Scholar 

  • Liu, J. C., Zhang, L. P., Zhang, Y. Z., Hong, H. S., & Deng, H. B. (2008). Validation of an agricultural non-point source (AGNPS) pollution model for a catchment in the Jiulong River watershed, China. Journal of Environmental Sciences, 20, 599–606.

    Article  CAS  Google Scholar 

  • Lu, F. Y., Liu, Z. Q., & Ji, H. B. (2013a). Carbon and nitrogen isotopes analysis and sources of organic matter in the upper reaches of the Chaobai River near Beijing, China. Science China-Earth Sciences, 56, 217–227.

    Article  CAS  Google Scholar 

  • Lu, J., Gong, D. Q., Shen, Y. N., Liu, M., & Chen, D. J. (2013b). An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China. Agricultural Water Management, 116, 79–88.

    Article  Google Scholar 

  • Ma, H., Yang D. W., Tan S. K., Gao, B., & Hu, Q. F. (2010). Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. Journal of Hydrology, 389, 317–324.

  • Ma, X., Li, Y., Zhang, M., Zheng, F. Z., & Du, S. (2011). Assessment and analysis of non-point source nitrogen and phosphorus loads in the Three Gorges Reservoir Area of Hubei Province, China. Science of the Total Environment, 412–413, 154–161.

    Article  Google Scholar 

  • Mengel, K., & Kirkby, E. A. (1982). Principles of Plant Nutrition (3rd ed., p. 655). Bern: International Potash Institute.

    Google Scholar 

  • Meybeck, M. (1982). Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282, 401–405.

    Article  CAS  Google Scholar 

  • Miao, C. Y., Ni, J. R., Borthwick, A. G. L., & Yang, L. (2011). A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Global and Planetary Change, 76(3–4), 196–205.

    Article  Google Scholar 

  • Miao, C. Y., Yang, L., & Chen, X. H. (2012). The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River basin, China. Land Degradation & Development, 23, 62–71.

    Article  Google Scholar 

  • National Environmental Protection Office of China. (2002). Standard methods for the examination of water and wastewater. Beijing: China Environmental Science Press.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and water assessment tool: theoretical documentation, version 2005 (pp. 252–255). Temple: Grassland, Soil and Water Research Laboratory, Agriculture Research Service & Blackland Research Centre, Texas Agriculture Experiment Station.

    Google Scholar 

  • Ongley, E. D., Zhang, X. L., & Yu, T. (2010). Current status of agricultural and rural non-point source Pollution assessment in China. Environmental Pollution, 158, 1159–1168.

    Article  CAS  Google Scholar 

  • Panno, S. V., Kelly, W. R., Hackley, K. C., Hwang, H. H., & Martinsek, A. T. (2008). Sources and fate of nitrate in the Illinois River Basin, Illinois. Journal of Hydrology, 359, 174–188.

    Article  Google Scholar 

  • Peterjohn, W. T., & Correll, D. L. (1984). Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology, 65, 1466–1475.

    Article  CAS  Google Scholar 

  • Richardson, D. A., Bucks, D. A., & Sadler, E. J. (2008). The conservation effects assessment project benchmark watersheds: synthesis of preliminary findings. Journal of Soil and Water Conservation, 63(6), 185–197.

  • Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2013). Phosphorus transport into a stream draining from a mixed land use catchment in Galicia (NW Spain): Significance of runoff events. Journal of Hydrology, 481, 12–21.

    Article  Google Scholar 

  • Shang, X., Wang, X. Z., Zhang, D. L., Chen, W. D., Chen, X. C., & Kong, H. N. (2012). An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale. Ecological Modelling, 226, 1–10.

    Article  CAS  Google Scholar 

  • Shen, Z. L., & Liu, Q. (2009). Nutrients in the Changjiang River. Environmental Monitoring and Assessment, 153, 27–44.

    Article  CAS  Google Scholar 

  • Shen, Z. Y., Qian, L., Qian, H., & Gong, Y. W. (2012). An overview of research on agricultural non-point source pollution modeling in China. Separation and Purification Technology, 84, 104–111.

    Article  CAS  Google Scholar 

  • Smol, J. P. (2008). Pollution of lakes and rivers-a paleoenvironmental perspective (pp. 180–181). Hong Kong: Blackwell Publishing Ltd.

    Google Scholar 

  • Soil and Water Protection Station of Beijing. (2004). Water quality of Miyun reservoir (pp. 7–10). Beijing: Soil and Water Protection Station.

    Google Scholar 

  • Su, M., Yu, J. W., Pan, S. L., An, W., & Yang, M. (2013). Spatial and temporal variations of two cyanobacteria in the mesotrophic Miyun reservoir, China. Journal of Environmental Science. doi:10.1016/S1001-0742(13)-60433-7.

    Google Scholar 

  • Tang, L. H., Yang, D. W., Hu, H. P., & Gao, B. (2011). Detecting the effect of land-use change on streamflow, sediment and nutrient losses by distributed hydrological simulation. Journal of Hydrology, 409, 172–182.

    Article  CAS  Google Scholar 

  • Torrecilla, N. J., Galve, J. P., Zaera, L. G., Retamar, J. F., & Álvarez, A. N. A. (2005). Nutrient sources and dynamics in a Mediterranean fluvial regime (Ebro river, NE Spain) and their implications for water management. Journal of Hydrology, 304, 166–182.

    Article  CAS  Google Scholar 

  • Wang, J. P., Cheng, S. T., & Jia, H. F. (2005). Water quality changing trends of the Miyun Reservoir. Journal of Southeast University, 21(2), 215–219.

    Google Scholar 

  • Wang, Z. J., Hong, J. M., & Du, G. S. (2008). Use of satellite imagery to assess the trophic state of Miyun Reservoir, Beijing, China. Environmental Pollution, 155, 13–19.

    Article  CAS  Google Scholar 

  • Wang, Q. S., Sun, D. B., Hao, W. P., Gu, Y., Li, Y. Z., Mei, X. R., & Zhang, Y. Q. (2011). Nitrate concentration distribution in groundwater of the Miyun Reservoir Watershed. Acta Pedologica Sinica, 48, 141–150.

    Google Scholar 

  • Wang, X. Y., Wang, C., Bao, L. L., & Xie, S. G. (2013a). Abundance and community structure of ammonia-oxidizing microorganisms in reservoir sediment and adjacent soils. Applied Microbiology Biotechnology. doi:10.1007/s00253-013-5174-5.

    Google Scholar 

  • Wang, Y. H., Jiang, Y. Z., Liao, W. H., Gao, P., Huang, X. M., Wang, H., Song, X. S., & Lei, X. H. (2013b). 3-D hydro-environmental simulation of Miyun reservoir, Beijing. Journal of Hydro-environment Research. doi:10.1016/j.jher.2013.09.002.

    Google Scholar 

  • Wu, Y. P., & Chen, J. (2013). Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecological Indicators, 32, 294–304.

    Article  CAS  Google Scholar 

  • Wu, F. F., & Wang, X. (2012). Eutrophication evaluation based on set pair analysis of Baiyangdian Lake, North China. Procedia Environmental Sciences, 13, 1030–1036.

    Article  CAS  Google Scholar 

  • Wu, L., Long, T. Y., Liu, X., & Guo, J. S. (2012). Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing River Watershed, China. Journal of Hydrology, 475, 26–41.

    Article  CAS  Google Scholar 

  • Xue, X. J., Wang, J. S., & Chen, C. C. (2012). Water quality of the river runoff at the reservoir inlets and its influence on the water quality of Miyun Reservoir. Beijing Water, 19(4), 11–14.

    Google Scholar 

  • Yang, S. T., Dong, G. T., Zheng, D. H., Xiao, H. L., Gao, Y. F., & Lang, Y. (2011). Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China. Ecological Modelling, 222, 3701–3717.

    Article  CAS  Google Scholar 

  • Young, R. A., Onstad, C. A., Bosch, D. D., & Anderson, W. P. (1987). AGNPS, Agricultural Non-Point Source Pollution Model-A watershed analysis tool, Conservation Research Report 35. Washington, DC: United States Department of Agriculture.

    Google Scholar 

  • Yu, T., Meng, W., Ongley, E., Li, Z. C., & Chen, J. S. (2010). Long-term variations and causal factors in nitrogen and phosphorus transport in the Yellow River, China. Estuarine, Coastal and Shelf Science, 86, 345–351.

    Article  Google Scholar 

  • Zhao, G. J., Hörmann, G., Fohrer, N., Li, H. P., Gao, J. F., & Tian, K. (2011). Development and application of a nitrogen simulation model in a data scarce catchment in South China. Agricultural Water Management, 98, 619–631.

    Article  Google Scholar 

  • Zhao, L., Li, Y. Z., Zou, R., He, B., Zhu, X., Liu, Y., Wang, J. S., & Zhu, Y. G. (2013). A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China). Environmental Pollution, 177, 13–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by “the National Natural Science Foundation of China (No. 41401560) and National Basic Research Program of China (2007CB407203).” We are very grateful to Des Walling for insightful comments and help in modifying the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 10570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Du, P. & Lang, C. Nutrient concentrations and fluxes in the upper catchment of the Miyun Reservoir, China, and potential nutrient reduction strategies. Environ Monit Assess 187, 110 (2015). https://doi.org/10.1007/s10661-015-4327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4327-7

Keywords

Navigation