Skip to main content
Log in

Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water quality agencies and scientists are increasingly adopting standardized sampling methodologies because of the challenges associated with interpreting data derived from dissimilar protocols. Here, we compare 13 protocols for monitoring streams from different regions and countries around the globe. Despite the spatially diverse range of countries assessed, many aspects of bioassessment structure and protocols were similar, thereby providing evidence of key characteristics that might be incorporated in a global sampling methodology. Similarities were found regarding sampler type, mesh size, sampling period, subsampling methods, and taxonomic resolution. Consistent field and laboratory methods are essential for merging data sets collected by multiple institutions to enable large-scale comparisons. We discuss the similarities and differences among protocols and present current trends and future recommendations for monitoring programs, especially for regions where large-scale protocols do not yet exist. We summarize the current state in one of these regions, Latin America, and comment on the possible development path for these techniques in this region. We conclude that several aspects of stream biomonitoring need additional performance evaluation (accuracy, precision, discriminatory power, relative costs), particularly when comparing targeted habitat (only the commonest habitat type) versus site-wide sampling (multiple habitat types), appropriate levels of sampling and processing effort, and standardized indicators to resolve dissimilarities among biomonitoring methods. Global issues such as climate change are creating an environment where there is an increasing need to have universally consistent data collection, processing and storage to enable large-scale trend analysis. Biomonitoring programs following standardized methods could aid international data sharing and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angermeier, P. L., & Karr, J. R. (1986). Applying an index of biotic integrity based on stream-fish communities: considerations in sampling and interpretation. North American Journal of Fisheries Management, 6, 418–429.

    Google Scholar 

  • AQEM Consortium. (2002). Manual for the application of the AQEM method. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0. http://www.eu-star.at/pdf/AqemMacroinvertebrateSamplingProtocol.pdf.

  • Armitage, P. D., Moss, D., Wright, J. F., & Furse, M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research, 17, 333–347.

    CAS  Google Scholar 

  • Bae, M.-J., Kwon, Y., Hwang, S.-J., Chon, T.-S., Yang, H.-J., Kwak, I.-S., Park, J.-H., Ham, S.-A., & Park, Y.-S. (2011). Relationships between three major stream assemblages and their environmental factors in multiple spatial scales. Annales de Limnologie International Journal of Limnology, 47, S91–S105.

    Google Scholar 

  • Bailey, R. C., Kennedy, M. G., Dervish, M. Z., & Taylor, R. M. (1998). Biological assessment of freshwater ecosystems using a reference condition approach: comparing predicted and actual benthic invertebrate communities in Yukon streams. Freshwater Biology, 39, 765–774.

    Google Scholar 

  • Bailey, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystems using the reference condition approach (p. 170). Norwell: Kluwer Academic Publishers.

    Google Scholar 

  • Baptista, D. F., Buss, D. F., Egler, M., Giovanelli, A., Silveira, M. P., & Nessimian, J. L. (2007). A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic forest streams of Rio de Janeiro state, Brazil. Hydrobiologia, 575, 83–94.

    Google Scholar 

  • Barbour, M. T., & Gerritsen, J. (1996). Subsampling of benthic samples: a defense of the fixed organism method. Journal of the North American Benthological Society, 15, 386–392.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Griffith, G. E., Frydenbourg, R., McCarron, E., White, J. S., & Bastian, M. L. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 15, 185–211.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd edition. EPA 841-B-99-002. US Environmental Protection Agency, Office of Water, Washington, DC.

  • Bennett, C., Owen, R., Birk, S., Buffagni, A., Erba, S., Mengin, N., Murray-Bligh, J., Ofenböck, G., Pardo, I., van de Bund, W., Wagner, F., & Wasson, J. G. (2011). Bringing European river quality into line: an exercise to intercalibrate macro-invertebrate classification methods. Hydrobiologia, 667, 31–48.

    Google Scholar 

  • Bijkerk, R. (editor). (2010). Handboek hydrobiologie: biologisch onderzoek voor de ecologische beoordeling van Nederlandse zoete en brakke oppervlaktewateren. Stichting Toegepast Onderzoek Waterbeheer, Amersfoort. (Available from: http://handboekhydrobiologie.stowa.nl/Het_Handboek/Het_Handboek.aspx?pId=110).

  • Blakely, T. J., Eikaas, H. S., & Harding, J. S. (2014). The SingScore: a macroinvertebrate biotic index for assessing the health of Singapore’s streams and canals. Raffles Bulletin of Zoology, 62, 540–548.

  • Blocksom, K. A., Autrey, B. C., Passmore, M., & Reynolds, L. (2008). A comparison of single and multiple habitat protocols for collecting macroinvertebrates in wadeable streams. Journal of the American Water Resources Association, 44, 1–17.

    Google Scholar 

  • Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 51, 495–523.

    CAS  Google Scholar 

  • Bonar, S., Hubert, W., & Willis, D. (Eds.). (2009). Standard methods for sampling North American freshwater fishes. Bethesda: American Fisheries Society.

    Google Scholar 

  • Borisko, J. P., Kilgour, B. W., Stanfield, L. W., & Jones, F. C. (2007). An evaluation of rapid bioassessment protocols for stream benthic invertebrates in Southern Ontario. Water Quality Research Journal of Canada, 42, 184–193.

    CAS  Google Scholar 

  • Bowman, M. F., & Bailey, R. C. (1997). Does taxonomic resolution affect the multivariate structure of freshwater benthic macroinvertebrate communities? Canadian Journal of Fisheries and Aquatic Sciences, 54, 1802–1807.

    Google Scholar 

  • Brua, R. B., Culp, J. M., & Benoy, G. A. (2011). Comparison of benthic macroinvertebrate communities by two methods: kick- and U-net sampling. Hydrobiologia, 658, 293–302.

    Google Scholar 

  • Buss, D. F., & Borges, E. L. (2008). Application of rapid bioassessment protocols (RBP) for benthic macroinvertebrates in Brazil: comparison between sampling techniques and mesh sizes. Neotropical Entomology, 37, 288–295.

    Google Scholar 

  • Buss, D. F., & Salles, F. F. (2007). Using Baetidae species as biological indicators of environmental degradation in a Brazilian River Basin. Environmental Monitoring and Assessment, 130, 365–372.

    CAS  Google Scholar 

  • Buss, D. F., & Vitorino, A. (2010). Rapid bioassessment protocols using benthic macroinvertebrates in Brazil: evaluation of taxonomic sufficiency. Journal of the North American Benthological Society, 29, 562–571.

    Google Scholar 

  • Buss, D. F., Baptista, D. F., Silveira, M. P., Nessimian, J. L., & Dorvillé, L. F. M. (2002). Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 481, 125–136.

    CAS  Google Scholar 

  • Buss, D. F., Baptista, D. F., Nessimian, J. L., & Egler, M. (2004). Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in Neotropical streams. Hydrobiologia, 518, 179–188.

    Google Scholar 

  • Callisto, M., Hughes, R. M., Lopes, J. M., & Castro, M. A. (Eds). (2014). Ecological conditions in watersheds of hydropower dams. Série Peixe Vivo 2, Companhia Energética de Minas Gerais, Belo Horizonte, Minas Gerais.

  • Cao, Y., & Hawkins, C. P. (2011). The comparability of bioassessments: a review of conceptual and methodological issues. Journal of the North American Benthological Society, 30, 680–701.

    Google Scholar 

  • Cao, Y., Larsen, D. P., Hughes, R. M., Angermeier, P. L., & Patton, T. M. (2002). Sampling effort affects multivariate comparisons of stream communities. Journal of the North American Benthological Society, 21, 701–714.

    Google Scholar 

  • Capítulo, A. R., Tangorra, M., & Ocón, C. (2001). Use of benthic macroinvertebrates to assess the biological status of Pampean streams in Argentina. Aquatic Ecology, 35, 109–119.

    Google Scholar 

  • Carter, J. L., & Resh, V. H. (2001). After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. Journal of the North American Benthological Society, 20, 658–682.

    Google Scholar 

  • Carter, J. L., & Resh, V. H. (2013). Analytical approaches used in stream benthic macroinvertebrate biomonitoring programs of State agencies in the United States. U.S. Geological Survey Open-File Report, 1129, 50.

    Google Scholar 

  • Chen, K., Hughes, R. M., Xu, S., Zhang, J., Cai, D., & Wang, B. (2014). Evaluating performance of macroinvertebrate-based predictive and null modeled multimetric indices (MMI) using multi-season and multi-year samples. Ecological Indicators, 36, 142–151.

    Google Scholar 

  • Cho, W.-S., Park, Y.-S., Park, H.-K., Kong, H.-Y., & Chon, T.-S. (2011). Ecological informatics approach to screening of integrity metrics based on benthic macroinvertebrates in streams. Annales de Limnologie International Journal of Limnology, 47, S51–S62.

    Google Scholar 

  • Chon, T.-S., Qu, X., Cho, W.-S., Hwang, H.-J., Tang, H., Liu, Y., Choi, J.-H., Jung, M., Chung, B. S., & Lee, H. Y. (2013). Evaluation of stream ecosystem health and species association based on multi-taxa (benthic macroinvertebrates, algae, and microorganisms) patterning with different levels of pollution. Ecological Informatics, 17, 58–72.

    Google Scholar 

  • Chutter, F. M. (1972). An empirical biotic index of the quality of the water in South African streams and rivers. Water Resources, 6, 19–30.

    Google Scholar 

  • Clapcott, J. E., Collier, K. J., Death, R. G., Goodwin, E. O., Harding, J. S., Kelly, D., & Young, R. G. (2012). Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshwater Biology, 57(1), 74–90.

    Google Scholar 

  • Clarke, R. T., & Hering, D. (2006). Errors and uncertainty in bioassessment methods—major results and conclusions from the STAR project and their applications using STARBUGS. Hydrobiologia, 566, 433–439.

    Google Scholar 

  • Clarke, R. T., Wright, J. F., & Furse, M. T. (2003). RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling, 160, 219–233.

    Google Scholar 

  • Clarke, R. T., Lorenz, A., Sandin, L., Schmidt-Kloiber, A., Strackbein, J., Kneebone, N. T., & Haase, P. (2006). Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. Hydrobiologia, 566, 441–459.

    Google Scholar 

  • Couceiro, S. R. M., Hamada, N., Luz, S. L. B., Forsberg, B. R., & Pimentel, T. P. (2007). Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia, 575, 271–284.

    CAS  Google Scholar 

  • Courtemanch, D. L. (1996). Commentary on the subsampling procedures used for rapid bioassessments. Journal of the North American Benthological Society, 15, 381–385.

    Google Scholar 

  • Dallas, H. F. (1997). A preliminary evaluation of aspects of SASS (South African Scoring System) for the rapid bioassessment of water quality in Rivers with particular reference to the incorporation of SASS in a national Biomonitoring Programme. Southern African Journal of Aquatic Sciences, 23(1), 79–94.

    Google Scholar 

  • Dallas, H. F. (2004). Seasonal variability of macroinvertebrate assemblages in two regions of South Africa: implications for aquatic bioassessment. African Journal of Aquatic Science, 29(2), 173–184.

    Google Scholar 

  • Davies, P. E. (1994). Monitoring river health initiative: river bioassessment manual. Freshwater Systems, University of Tasmania, Sandy Bay, Tasmania.

  • Davies, P. E. (2000). Development of a national river bioassessment system (AUSRIVAS) Australia. In J. F. Wright, D. W. Sutcliffe, & M. T. Furse (Eds.), Assessing the biological quality of freshwaters: RIVPACS and other techniques (pp. 113–124). Cumbria: Freshwater Biological Association.

    Google Scholar 

  • Davies, P. E., Harris, J., Hillman, T., & Walker, K. (2010). The Sustainable Rivers Audit: assessing river ecosystem health in the Murray-Darling Basin, Australia. Marine and Freshwater Research, 61, 764–777.

    CAS  Google Scholar 

  • Dickens, C. W. S., & Graham, P. M. (2002). The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers. African Journal of Aquatic Science, 27, 1–10.

    Google Scholar 

  • Doberstein, C. P., Karr, J. R., & Conquest, L. L. (2000). The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams. Freshwater Biology, 44, 355–371.

    Google Scholar 

  • Ellis, D. (1985). Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin, 16, 459.

    Google Scholar 

  • Environment Agency. (2012a). Freshwater macro-invertebrate sampling in rivers. Operational instruction 018_08.

  • Environment Agency. (2012b). Freshwater macro-invertebrate analysis of riverine samples. Operational instruction 024_08.

  • Esselman, P. C., Infante, D. M., Wang, L., Cooper, A. R., Wieferich, D., Tsang, Y., Thornbrugh, D. J., & Taylor, W. W. (2013). Regional fish community indicators of landscape disturbance to catchments of the conterminous United States. Ecological Indicators, 26, 163–173.

    Google Scholar 

  • European Commission. (2000). The EU Water Framework Directive - integrated river basin management for Europe. http://ec.europa.eu/environment/water/water-framework/index_en.html.

  • Fenoglio, S., Badino, G., & Bona, F. (2002). Benthic macroinvertebrate communities as indicators of river environment quality: an experience in Nicaragua. Revista de Biología Tropical, 50, 1125–1131.

    Google Scholar 

  • Ferreira, W. R., Paiva, L. T., & Callisto, M. (2011). Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Brazilian Journal of Biology, 71, 15–25.

    CAS  Google Scholar 

  • Furse, M. T., Moss, D., Wright, J. F., & Armitage, P. D. (1984). The influence of seasonal and taxonomic factors on the ordination and classification of running-water sites in Great Britain and on the prediction of their macro-invertebrate communities. Freshwater Biology, 14, 257–280.

    Google Scholar 

  • Gabriels, W., Lock, K., de Pauw, N., & Goethals, P. L. M. (2010). Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica, 40, 199–207.

    Google Scholar 

  • Gerth, W. J., & Herlihy, A. T. (2006). Effect of sampling different habitat types in regional macroinvertebrate bioassessment surveys. Journal of the North American Benthological Society, 25, 501–512.

    Google Scholar 

  • Ghetti, P. F. (1997). Manuale di applicazione indice biotico esteso (I.B.E.). Trento: Provincia Autonoma di Trento.

    Google Scholar 

  • Haase, P., & Sundermann, A. (2004). Standardisierung der erfassungs- und auswertungsmethoden von makrozoobenthos-untersuchungen in fließgewässern (FKZ O 4.02). Forschungsinstitut Senckenberg, Biebergemünd. http://www.perlodes.de/download/probenahme-sortierung/

  • Haase, P., Pauls, S., Sundermann, A., & Zenker, A. (2004b). Testing different sorting techniques in macroinvertebrate samples from running waters. Limnologica, 34, 366–378.

    Google Scholar 

  • Hamada, N., Nessimian, J. L., & Querino, R. B. (Eds.). (2014). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: Editora INPA.

    Google Scholar 

  • Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S., & Jones, E. B. D., III. (1998). Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Science, 95, 14843–14847.

    CAS  Google Scholar 

  • Hawkins, C. P. (2006). Quantifying biological integrity by taxonomic completeness: evaluation of a potential indicator for use in regional- and global-scale assessments. Ecological Applications, 16, 1277–1294.

    Google Scholar 

  • Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W. (2000). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications, 10, 1456–1477.

    Google Scholar 

  • Hellawell, J. M. (1986). Biological indicators of freshwater pollution and environmental management. London: Elsevier Applied Science.

    Google Scholar 

  • Hering, D., Feld, C. K., Moog, O., & Ofenböck, T. (2006). Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia, 566, 311–342.

    Google Scholar 

  • Herlihy, A. T., Paulsen, S. G., Van Sickle, J., Stoddard, J. L., Hawkins, C. P., & Yuan, L. L. (2008). Striving for consistency in a national assessment: the challenges of applying a reference condition approach at a continental scale. Journal of the North American Benthological Society, 27, 860–877.

    Google Scholar 

  • Hilsenhoff, W. L. (1977). Use of arthropods to evaluate water quality of streams. Technical bulletin 100. Madison: Department of Natural Resources.

    Google Scholar 

  • Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20, 31–39.

    Google Scholar 

  • Hose, G., Turak, E., & Waddell, N. (2004). Reproducibility of AUSRIVAS rapid bioassessments using macroinvertebrates. Journal of the North American Benthological Society, 23, 126–139.

    Google Scholar 

  • Hughes, R. M. (1995). Defining acceptable biological status by comparing with reference conditions. In W. Davis & T. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 31–47). Michigan: Lewis, Chelsea.

    Google Scholar 

  • Hughes, R. M., & Herlihy, A. T. (2007). Electrofishing distance needed to estimate consistent IBI scores in raftable Oregon rivers. Transactions of the American Fisheries Society, 136, 135–141.

    Google Scholar 

  • Hughes, R. M., & Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27, 837–859.

    Google Scholar 

  • Hughes, R. M., Paulsen, S. G., & Stoddard, J. L. (2000). EMAP-surface waters: a national, multiassemblage, probability survey of ecological integrity. Hydrobiologia, 422(423), 429–443.

    Google Scholar 

  • Humphrey, C. L., Storey, A. W., & Thurtell, L. (2000). AUSRIVAS: operator sample processing errors and temporal variability—implications for model sensitivity. In J. F. Wright, D. W. Sutcliffe, & M. T. Furse (Eds.), Assessing the biological quality of fresh waters (pp. 143–165). Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Jacobsen, D. (1998). The effect of organic pollution on the macroinvertebrate fauna of Ecuadorian highland streams. Archives of Hydrobiology, 143, 179–195.

    CAS  Google Scholar 

  • Jiménez-Valencia, J., Kaufmann, P. R., Sattamini, A., Mugnai, R., & Baptista, D. F. (2014). Assessing the ecological condition of streams in a southeastern Brazilian basin using a probabilistic monitoring design. Environmental Monitoring and Assessment, 186, 4685–95.

    Google Scholar 

  • Jones, F. C. (2008). Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews, 16, 45–69.

    Google Scholar 

  • Jones, J. I., Davy-Bowker, J., Murphy, J. F., & Pretty, J. L. (2010). Ecological monitoring and assessment of pollution in rivers. In L. Batty (Ed.), Ecology of industrial pollution: remediation, restoration and preservation. UK: Cambridge Press.

    Google Scholar 

  • Joy, M. K., & Death, R. G. (2003). Biological assessment of rivers in the Manawatu-Wanganui region of New Zealand using a predictive macroinvertebrate model. New Zealand Journal of Marine and Freshwater Research, 37, 367–379.

    Google Scholar 

  • Jun, Y.-C., Kim, N.-Y., Kwon, S.-J., Han, S.-C., Hwang, I.-C., Park, J.-H., Won, D.-H., Byun, M.-S., Kong, H.-Y., Lee, J.-E., & Hwang, S.-J. (2011). Effects of land use on benthic macroinvertebrate communities: comparison of two mountain streams in Korea. Annales de Limnologie International Journal of Limnology, 47, S35–S49.

    Google Scholar 

  • Jun, Y.-C., Won, D.-H., Lee, S.-H., Kong, D.-S., & Hwang, S.-J. (2012). A multimetric benthic macroinvertebrate index for the assessment of stream biotic integrity in Korea. International Journal of Environmental Research and Public Health, 9, 3599–3628.

    Google Scholar 

  • Junqueira, M. V., Friedrich, G., & Pereira de Araujo, P. R. (2010). A saprobic index for biological assessment of river water quality in Brazil (Minas Gerais and Rio de Janeiro states). Environmental Monitoring and Assessment, 163(1–4), 545–554.

    CAS  Google Scholar 

  • Kail, J., Arle, J., & Jähnig, S. C. (2012). Limiting factors and thresholds for macroinvertebrate assemblages in European rivers: empirical evidence from three datasets on water quality, catchment urbanization, and river restoration. Ecological Indicators, 18, 63–72.

    CAS  Google Scholar 

  • Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21–27.

    Google Scholar 

  • Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: better biological monitoring. Washington, D.C.: Island Press.

    Google Scholar 

  • King, R. S., & Richardson, C. J. (2002). Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. Journal of the North American Benthological Society, 21, 150–171.

    Google Scholar 

  • Klemm, D. J., Blocksom, K. A., Fulk, F. A., Herlihy, A. T., Hughes, R. M., Kaufmann, P. R., Peck, D. V., Stoddard, J. L., Thoeny, W. T., Griffith, M. B., & Davis, W. S. (2003). Development and evaluation of a macroinvertebrate biotic integrity index (MBII) for regionally assessing Mid-Atlantic Highlands streams. Environmental Management, 31, 656–669.

    Google Scholar 

  • Lenat, D. R., & Resh, V. H. (2001). Taxonomy and stream ecology - the benefits of genus- and species-level identifications. Journal of the North American Benthological Society, 20, 287–298.

    Google Scholar 

  • Li, J., Herlihy, A. T., Gerth, W., Kaufmann, P. R., Gregory, S. V., Urquhart, S., & Larsen, D. P. (2001). Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology, 46, 87–97.

    Google Scholar 

  • Li, F., Cai, Q., Qu, X., Tang, T., Wu, N., Fu, X., Duan, S., & Jähnig, S. C. (2012). Characterizing macroinvertebrate communities across China: large-scale implementation of a self-organizing map. Ecological Indicators, 23, 394–401.

    Google Scholar 

  • Li, L., Liu, L., Hughes, R. M., Cao, Y., & Wang, X. (2014). Towards a protocol for stream macroinvertebrate sampling in China. Environmental Monitoring and Assessment, 186, 469–479.

    CAS  Google Scholar 

  • Ligeiro, R., Ferreira, W., Hughes, R. M., & Callisto, M. (2013a). The problem of using fixed-area subsampling methods to estimate macroinvertebrate richness: a case study with Neotropical stream data. Environmental Monitoring and Assessment, 185, 4077–4085.

    CAS  Google Scholar 

  • Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W., Oliveira, W. D., Melo, A. S., & Callisto, M. (2013b). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45–57.

    Google Scholar 

  • Mackey, A. P., Cooling, D. A., & Berrie, A. D. (1984). An evaluation of sampling strategies for qualitative surveys of macro-invertebrates in rivers, using pond nets. Journal of Applied Ecology, 21, 515–534.

    Google Scholar 

  • Makovinská, J., Tóthová, L., Baláži, P., Hlúbiková, D., Mišíková Elexová, E., Šporka, F., Ftorková, L. (2008). STN 75 7715. Kvalita vody. Biologický rozbor povrchovej vody - Slovak National Standard 75 7715. Water quality. Biological analysis of surface water. Water Research Institute. Slovak Office of Standards, Metrology And Testing. Bratislava, Slovak Republic.

  • Marchant, R., Barmuta, L. A., & Chessman, B. C. (1995). Influence of sample quantification and taxonomic resolution on the ordination of macroinvertebrate communities from running waters in Victoria, Australia. Marine and Freshwater Research, 46, 501–506.

    Google Scholar 

  • Marques, M. M., & Barbosa, F. (2001). Biological quality of waters from an impacted tropical watershed (middle Rio Doce basin, southeast Brazil), using benthic macroinvertebrate communities as an indicator. Hydrobiologia, 457, 69–76.

    CAS  Google Scholar 

  • Marzin, A., Archaimbault, V., Belliard, J., Chauvin, C., Delmas, F., & Pont, D. (2012). Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators, 23, 56–65.

    CAS  Google Scholar 

  • Meier, C., Hering, D., Biss, R., Bohmer, J., Rawer-Jost, C., Zenker, A., Haase, P., Scholl, F., Rolauffs, P., & Sundermann, A. (2006). Weiterentwicklung und anpassung des nationalen bewertungssystems für makrozoobenthos an neue internationale vorgaben. Essen: University of Duisburg-Essen.

    Google Scholar 

  • Melo, A. S. (2005). Effects of taxonomic and numeric resolution on the ability to detect ecological patterns at a local scale using stream macroinvertebrates. Archives für Hydrobiologie, 164, 309–323.

    Google Scholar 

  • Menezes, S., Baird, D. J., & Soares, A. M. V. M. (2010). Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology, 47, 711–719.

    Google Scholar 

  • Metcalfe, J. L. (1989). Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environmental Pollution, 60, 101–139.

    CAS  Google Scholar 

  • Miserendino, M. L., Brand, C., & Di Prinzio, C. Y. (2008). Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water, Air, and Soil Pollution, 194, 91–110.

    CAS  Google Scholar 

  • Mišíková, E. E., Haviar, M., Lešťáková, M., & Ščerbáková, S. (2010). Checklist of taxa examined at localities monitored in the Slovak surface water bodies - Benthic invertebrates. Acta Environmentalica Universitatis Comenianeae (Bratislava), 18(1), 1–335.

    Google Scholar 

  • Moreno, P., Franca, J. S., Ferreira, W. R., Paz, A. D., Monteiro, I. M., & Callisto, M. (2009). Use of the BEAST model for biomonitoring water quality in a neotropical basin. Hydrobiologia, 630, 231–242.

    CAS  Google Scholar 

  • Morse, J. C., Bae, Y. J., Munkhjargal, G., Sangpradub, N., Tanida, K., Vshivkova, T. S., Wang, B., Yang, L., & Yule, C. M. (2007). Freshwater biomonitoring with macroinvertebrates in East Asia. Frontiers in Ecology and the Environment, 5, 33–42.

    Google Scholar 

  • Moulton, S. R., II, Kennan, J. G., Goldstein, R. M., & Hambrook, J. A. (2002). Revised protocols for sampling algal, invertebrate, and fish communities as part of the National Water-Quality Assessment Program. Open-File Report 02-150. U.S. Reston: Geological Survey.

    Google Scholar 

  • Moya, N., Hughes, R. M., Dominguez, E., Gibon, F. M., Goita, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams. Ecological Indicators, 11, 840–847.

    Google Scholar 

  • Mugnai, R., Oliveira, R. B. S., Carvalho, A. L., & Baptista, D. F. (2008). Adaptation of the indice biotico esteso (IBE) for water quality assessment in rivers of Serra do Mar, Rio de Janeiro State, Brazil. Tropical Zoology, 21, 57–74.

    Google Scholar 

  • Mugnai, R., Nessimian, J.L., & Baptista, D.F. (2010). Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Editora Technical Books. 176p.

  • Nichols, S. J., Robinson, W. A., & Norris, R. H. (2010). Using the reference condition maintains the integrity of a bioassessment program in a changing climate. Journal of the North American Benthological Society, 29, 1459–1471.

    Google Scholar 

  • Norris, R. H., McElravy, E. P., & Resh, V. H. (1995). The sampling problem. In P. Calow & G. E. Petts (Eds.), The rivers handbook (pp. 282–306). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Oliveira, R. B. S., Mugnai, R., Castro, C. M., & Baptista, D. F. (2011a). Determining subsampling effort for the development of a rapid bioassessment protocol using benthic macroinvertebrates in streams of southeastern Brazil. Environmental Monitoring and Assessment, 175, 75–85.

    Google Scholar 

  • Oliveira, R. B. S., Mugnai, R., Castro, C. M., Baptista, D. F., & Hughes, R. M. (2011b). Towards a rapid bioassessment protocol for wadeable streams in Brazil: development of a multimetric index based on benthic macroinvertebrates. Ecological Indicators, 11, 1584–1593.

    Google Scholar 

  • Ollis, D. J., Dallas, H. F., Esler, K. J., & Boucher, C. (2006). Bioassesment of the ecological integrity of river ecosystems using aquatic macroinvertebrates: an overview with a focus on South Africa. African Journal of Aquatic Science, 31(2), 205–227.

    Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77(1), 118–125.

    Google Scholar 

  • Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management. doi:10.1007/s00267-014-0364-1.

    Google Scholar 

  • Pardo, I., García, L., Delgado, C., Costas, N., & Abraín, R. (2010). Protocolos de muestreo de comunidades biológicas acuáticas fluviales en el ámbito de las Confederaciones Hidrográficas del Miño-Sil y Cantábrico. Convenio entre la Universidad de Vigo y las Confederaciones Hidrográficas del Miño-Sil y Cantábrico. 68pp. NIPO 783-10-001-8.

  • Park, Y.-S., Chon, T.-S., Kwak, I.-S., & Lek, S. (2004). Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Science of the Total Environment, 327, 105–22.

    CAS  Google Scholar 

  • Parsons, M., & Norris, R. H. (1996). The effect of habitat specific sampling on biological assessment of water quality using a predictive model. Freshwater Biology, 36, 419–434.

    Google Scholar 

  • Paulsen, S. G., Mayio, A., Peck, D. V., Stoddard, J. L., Tarquinio, E., Holdsworth, S. M., Van Sickle, J., Yuan, L. L., Hawkins, C. P., Herlihy, A., Kaufmann, P. R., Barbour, M. T., Larsen, D. P., & Olsen, A. R. (2008). Condition of stream ecosystems in the US: an overview of the first national assessment. Journal of the North American Benthological Society, 27, 812–821.

    Google Scholar 

  • Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., Lazorchak, J. M., McCormick, F. H., Peterson, S. A., Ringold, P. L., Magee, T., & Cappaert, M. (2006). Environmental monitoring and assessment program—surface waters western pilot study: field operations manual for Wadeable streams. EPA 620/R-06/003. U.S. Washington: Environmental Protection Agency, Office of Research and Development.

    Google Scholar 

  • Petkovska, V., & Urbanič, G. (2010). Effect of fixed-fraction subsampling on macroinvertebrate bioassessment of rivers. Environmental Monitoring and Assessment, 169, 179–201.

    Google Scholar 

  • Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K., & Hughes, R. M. (1989). Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish (EPA/444/4-89/001). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Pont, D., Hugueny, B., Beier, U., Goffaux, D., Melcher, A., Noble, R., Rogers, C., Roset, N., & Schmutz, S. (2006). Assessing river biotic condition at the continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology, 43, 70–80.

    Google Scholar 

  • Pont, D., Hughes, R. M., Whittier, T. R., & Schmutz, S. (2009). A predictive index of biotic integrity model for aquatic-vertebrate assemblages of western U.S. streams. Transactions of the American Fisheries Society, 138, 292–305.

    Google Scholar 

  • Qu, X. D., Bae, M.-J., Chon, T.-S., & Park, Y.-S. (2013). Evaluation of subsampling efforts in estimating community indices and community structures. Ecological Informatics, 17, 3–13.

    Google Scholar 

  • Reece, P. F., Reynoldson, T. B., Richardson, J. S., & Rosenberg, D. M. (2001). Implications of seasonal variation for biomonitoring with predictive models in the Fraser River catchment, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1411–1418.

    Google Scholar 

  • Resh, V. H., & Jackson, J. K. (1993). Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 195–233). New York: Chapman and Hall.

    Google Scholar 

  • Resh, V. H., & McElravy, E. P. (1993). Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 159–194). New York: Chapman and Hall.

    Google Scholar 

  • Resh, V. H., Norris, R. H., & Barbour, M. T. (1995). Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Australian Journal of Ecology, 20, 108–121.

    Google Scholar 

  • Reynolds, L., Herlihy, A. T., Kaufmann, P. R., Gregory, S. V., & Hughes, R. M. (2003). Electrofishing effort requirements for assessing species richness and biotic integrity in western Oregon streams. North American Journal of Fisheries Management, 23, 450–461.

    Google Scholar 

  • Reynoldson, T. B., Bailey, R. C., Day, K. E., & Norris, R. H. (1995). Biological guidelines for freshwater sediment based on benthic assessment of sediment (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology, 20, 198–219.

    Google Scholar 

  • Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenberg, D. M. (1997). The reference condition approach: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinveterbates. Journal of the North American Benthological Society, 16, 833–852.

    Google Scholar 

  • Reynoldson, T. B., Bombardier, M., Donald, D. B., O’Neill, H., Rosenberg, D. M., Shear, H., Tuominen, T. M., & Vaughan, H. H. (1999). Strategy for a Canadian aquatic biomonitoring network. National Water Research Institute, Environment Canada, Burlington, ON. NWRI Contribution No. 99-248. 24 p.

  • Reynoldson, T. B., Rosenberg, D. M., & Resh, V. H. (2001). Comparison of models predicting invertebrate assemblages for biomonitoring in the Fraser River catchment, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1395–1410.

    CAS  Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (Eds.). (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall.

    Google Scholar 

  • Rosenberg, D. M., T. B. Reynoldson, and V. H. Resh. (1999). Establishing reference condition for benthic invertebrate monitoring in the Fraser River catchment, British Columbia, Canada. Environment Canada, Vancouver BC. DOE-FRAP 1998-32. 149 p.

  • Schiller, C. (2003). AUSRIVAS protocol development and testing. Water Ecoscience Report Number 3044/2003. Water Ecoscience, Monitoring river health initiative technical report number 36, Department of the Environment and Heritage.

  • Schmidt-Kloiber, A., & Nijboer, R. C. (2004). The effect of taxonomic resolution on the assessment of ecological water quality classes. Hydrobiologia, 516, 269–283.

    Google Scholar 

  • Schneck, F., & Melo, A. S. (2010). Reliable sample sizes for estimating similarity among macroinvertebrate assemblages in tropical streams. Annals of Limnology International Journal of Limnology, 46, 93–100.

    Google Scholar 

  • Simon, T. P., & Sanders, R. E. (1999). Applying an index of biotic integrity based on great-river fish communities: considerations in sampling and interpretation. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity for water resources using fish communities (pp. 474–505). Boca Raton: CRC Press.

    Google Scholar 

  • Simpson, J., & Norris, R. H. (2000). Biological assessment of water quality: development of AUSRIVAS models and outputs. In J. F. Wright, D. W. Sutcliffe, & M. T. Furse (Eds.), RIVPACS and similar techniques for assessing the biological quality of freshwaters (pp. 125–142). Ableside: Freshwater Biological Association and Environment Agency.

    Google Scholar 

  • Somers, K. M., Reid, R. A., & David, S. M. (1998). Rapid biological assessments: how many animals are enough? Journal of the North American Benthological Society, 17, 348–358.

    Google Scholar 

  • Splunder, I. van, Pelsma, T. A. H. M., & Bak, A. (editors). (2006). Richtlijnen monitoring oppervlaktewater: Europese Kaderrichtlijn Water, versie 1.3. Landelijk Bestuurlijk Overleg Water.

  • Šporka, F., Vlek, H. E., Bulánková, E., & Krno, I. (2006). Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobiologia, 566, 543–555.

    Google Scholar 

  • Stark, J. D. (1985). A macroinvertebrate community index of water quality for stony streams. Water & Soil Miscellaneous Publication 87 (p. 53). Wellington: National Water and Soil Conservation Authority.

    Google Scholar 

  • Stark, J. D. (1998). SQMCI: a biotic index for freshwater macroinvertebrate coded abundance data. New Zealand Journal of Marine and Freshwater Research, 32, 55–66.

    Google Scholar 

  • Stark, J. D., & Maxted, J. R. (2010). A biotic index for New Zealand’s soft‐bottomed streams. New Zealand Journal of Marine and Freshwater Research, 41, 43–61.

    Google Scholar 

  • Stark, J. D., Boothroyd, I. K., Harding, J. S., Maxted, J. R., & Scarsbrook, M. R. (2001). Protocols for sampling macroinvertebrates in wadeable streams. New Zealand Macroinvertebrate Working group report no. 1 (p. 57). Wellington: Ministry for the Environment.

    Google Scholar 

  • Statzner, B., Hoppenhaus, K., Arens, M. F., & Richoux, P. (1997). Reproductive traits, habitat use and templet theory: a synthesis of world-wide data on aquatic insects. Freshwater Biology, 38, 109–35.

    Google Scholar 

  • Statzner, B., Hildrew, A. G., & Resh, V. H. (2001). Species traits and environmental constraints: entomological research and the history of ecological theory. Annual Review of Entomology, 46, 291–316.

    CAS  Google Scholar 

  • Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16, 1267–1276.

    Google Scholar 

  • Stoddard, J. L., Herlihy, A. T., Peck, D. V., Hughes, R. M., Whittier, T. R., & Tarquinio, E. (2008). A process for creating multi-metric indices for large-scale aquatic surveys. Journal of the North American Benthological Society, 27, 878–891.

    Google Scholar 

  • Tarras-Wahlberg, N. H., Flachier, A., Lang, S. N., & Sangfors, O. (2001). Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango River basin, southern Ecuador. Science of the Total Environment, 278, 239–261.

    CAS  Google Scholar 

  • Thirion, C. (2008). River ecoclassification: manual for ecostatus determination (version2) module E: Macroinvertebrate Response Assessment Index (MIRAI) (Volume1). Report to the Water Research Commission. WRC report no TT332/08.

  • USEPA U.S. Environmental Protection Agency. (2013). National rivers and streams assessment 2008-2009: a collaborative survey. EPA/841/D-13/001. Office of wetlands, oceans and watersheds and office of research and development, Washington, DC.

  • Verdonschot, P. F. M., & Nijboer, R. C. (2004). Testing the European stream typology of the water framework directive for macroinvertebrates. Developments in Hydrobiology, 175, 35–54.

    Google Scholar 

  • Vlek, H. E., Šporka, F., & Krno, I. (2006). Influence of macroinvertebrate sample size on bioassessment of streams. Hydrobiologia, 566, 523–542.

    Google Scholar 

  • Walsh, C. J. (1997). A multivariate method for determining optimal subsample size in the analysis of macroinvertebrate samples. Marine and Freshwater Research, 48, 241–248.

    Google Scholar 

  • Wang, L., Infante, D., Esselman, P., Cooper, A., Wu, D., Taylor, W., Beard, D., Whelan, G., & Ostroff, A. (2011). A hierarchical spatial framework and database for the national river fish habitat condition assessment. Fisheries, 36, 436–449.

    Google Scholar 

  • Weigel, B. M., Henne, L. J., & Martínez-Riveira, L. M. (2002). Macroinvertebrate-based index of biotic integrity for protection of streams in west-central Mexico. Journal of the North American Benthological Society, 21, 686–700.

    Google Scholar 

  • Whittier, T. R., & Van Sickle, J. (2010). Macroinvertebrate tolerance levels and an assemblage tolerance index (ATI) for western USA streams and rivers. Journal of the North American Benthological Society, 29, 852–866.

    Google Scholar 

  • Whittier, T. R., Stoddard, J. L., Larsen, D. P., & Herlihy, A. T. (2007). Selecting reference sites for stream biological assessment: best professional judgement or objective criteria. Journal of the North American Benthological Society, 26, 349–360.

    Google Scholar 

  • Winget, R. N., & Mangum, F. A. (1979). Biotic condition index: integrated biological, physical, and chemical stream parameters for management. Ogden: U.S. Forest Service, Intermountain Region.

    Google Scholar 

  • Winterbourn, M. J, Gregson, K. L. D., & Dolphin, C. H. (2006). Guide to the aquatic insects of New Zealand. Fourth Edition. Bulletin of the Entomological Society of New Zealand 14. 108p.

  • Won, D.-H., Jun, Y.-C., Kwon, S.-J., Hwang, S.-J., Ahn, K.-G., & Lee, J. K. (2006). Development of Korean Saprobic Index using benthic macroinvertebrates and its application to biological stream environment assessment. Journal of Korean Society on Water Quality, 22, 768–783 (in Korean).

    Google Scholar 

  • Wright, J. F., Moss, D., Armitage, P. D., & Furse, M. T. (1984). A preliminary classification of running-water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshwater Biology, 14, 221–256.

    Google Scholar 

  • Wright, J. F., Sutcliffe, D. W., & Furse, M. T. (Eds.). (2000). Assessing the biological quality of fresh waters—RIVPACS and other techniques. Ambleside: Freshwater Biological Association.

    Google Scholar 

  • Zhang, Y., Richardson, J. S., & Pinto, X. (2009). Catchment-scale effects of forestry practices on benthic invertebrate communities in Pacific coastal streams. Journal of Applied Ecology, 46, 1292–1303.

    Google Scholar 

  • Zuellig, R. E., Carlisle, D. M., Potapova, M., & Meador, M. R. (2012). Variance partitioning of stream diatom, fish, and invertebrate indicators of biological condition. Freshwater Science, 31, 182–190.

    Google Scholar 

Download references

Acknowledgments

This paper was stimulated by a Fulbright-Brazil grant to R.M. Hughes during a visit to FIOCRUZ, Brazil, and a grant to D.F. Buss (CNPq/PROEP No 400107/2011-2) and generated out of a special symposium at the 2011 annual meeting of the Society for Freshwater Science, at which the coauthors willingly committed their time and travel funds. We are very grateful to Tim Jones, Isabel Pardo, Emilia Mišíková Elexová, Wim Gabriels, and Christian Feld for providing us with the essential information on their national monitoring protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Buss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buss, D.F., Carlisle, D.M., Chon, TS. et al. Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ Monit Assess 187, 4132 (2015). https://doi.org/10.1007/s10661-014-4132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4132-8

Keywords

Navigation