Skip to main content
Log in

Advertising bidding involving consumer information sharing

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

As of recently, consumers can actively manage their level of individual-level information sharing, making the advertising bidding decision more complicated. In this paper, we study the advertising bidding decisions under the assumption that consumers can manage the level of their information sharing. Using a Salop city model to capture consumers’ prior product preferences, we firstly find that whether a targeted advertisement or a mass advertisement is the optimal advertising type in a duopoly hinges on the neighbor seller’s price and the level of consumer information sharing. Secondly, when we consider several sellers in an oligopoly, we find that the level of consumer information sharing affects the advertising bidding among different sellers. Thirdly, we compare the performance of a mass advertisement versus a targeted advertisement by numerical analysis in an oligopoly. We find that the targeted advertisements always perform better than mass advertisements in achieving optimal profit for both dominant sellers and non-dominant sellers in an oligopoly. Finally, we also discuss the regulatory implications for firms using consumer information as well as the managerial implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguirre, E., Roggeveen, A. L., Grewal, D., & Wetzels, M. (2016). The personalization-privacy paradox: Implications for new media. Journal of Consumer Marketing, 33(2), 98–110. https://doi.org/10.1108/JCM-06-2015-1458

    Article  Google Scholar 

  2. Athey, S., & Ellison, G. (2011). Position auction with consumer search. Quarterly Journal of Economics, 126(3), 1213–1270. https://doi.org/10.1093/qje/qjr028

    Article  Google Scholar 

  3. Azevedo, E. M., Pennock, D. M., Waggoner, B., & Weyl, E. G. (2020). Channel auctions. Management Science, 66(5), 2075–2082. https://doi.org/10.1287/mnsc.2019.3487

    Article  Google Scholar 

  4. Bandara, R., Fernando, M., & Akter, S. (2020). Addressing privacy predicaments in the digital marketplace: A power-relations perspective. International Journal of Consumer Studies, 44(5), 423–434. https://doi.org/10.1111/ijcs.12576

    Article  Google Scholar 

  5. Belleflamme, P., Lam, W., & Vergote, W. (2020). Competitive imperfect price discrimination and market power. Marketing Science, 39(5), 996–1015.

    Article  Google Scholar 

  6. Belleflamme, P., & Vergote, W. (2016). Monopoly price discrimination and privacy: The hidden cost of hiding. Economics Letters, 149(12), 141–144. https://doi.org/10.1016/j.econlet.2016.10.027

    Article  Google Scholar 

  7. Budish, B. E., & Takeyama, L. N. (2001). Buy prices in online auctions: Irrationality on the internet? Economics Letters, 72(3), 325–333. https://doi.org/10.1016/S0165-1765(01)00438-4

    Article  Google Scholar 

  8. Chen, J., & Stallaert, J. (2014). An economic analysis of online advertising using behavioral targeting. MIS Quarterly, 38(2), 429–450. https://doi.org/10.2139/ssrn.1787608

    Article  Google Scholar 

  9. Chen, Y. J. (2017). Optimal dynamic auctions for display advertising. Operations Research, 65(4), 897–913. https://doi.org/10.1287/opre.2017.1592

    Article  Google Scholar 

  10. Chen, Y., & He, C. (2011). Paid placement: Advertising and search on the internet. Economic Journal, 121(556), 309–328. https://doi.org/10.1111/j.1468-0297.2011.02466.x

    Article  Google Scholar 

  11. Chen, Y., & Iyer, G. (2002). Consumer addressability and customized pricing. Marketing Science, 21(2), 197–208. https://doi.org/10.2307/1558067

    Article  Google Scholar 

  12. Chen, Z., Choe, C., & Matsushima, N. (2020). Competitive personalized pricing. Management Science, 66(9), 4003–4023. https://doi.org/10.1287/mnsc.2019.3392

    Article  Google Scholar 

  13. Chen, B., Huang, J., Huang, Y., Kollias, S., et al. (2020). Combining guaranteed and spot markets in display advertising: Selling guaranteed page views with stochastic demand. European Journal of Operational Research, 280(3), 1144–1159.

    Article  Google Scholar 

  14. Choe, C., King, S., & Matsushima, N. (2018). Pricing with cookies: Behavior based price discrimination and spatial competition. Management Science, 64(12), 5669–5687. https://doi.org/10.1287/mnsc.2017.2873

    Article  Google Scholar 

  15. Choe, C., & Matsushima, N. (2021). Behavior-based price discrimination and product choice. Review of Industrial Organization, 58, 263–273. https://doi.org/10.1007/s11151-020-09783-x

    Article  Google Scholar 

  16. Claire, M. S., Hilde, A. M., & Voorveld & Khadija, A V. (2021). The role of ad sequence and privacy concerns in personalized advertising: An eye-tracking study into synced advertising effects. Journal of Advertising, 50(3), 320–329.

    Article  Google Scholar 

  17. Decarolis, F., Goldmanis, M., & Penta, A. (2020). Marketing agencies and collusive bidding in online ad auctions. Management Science, 66(10), 4433–4454. https://doi.org/10.1287/mnsc.2019.3457

    Article  Google Scholar 

  18. Demange, G., Gale, D., & Sotomayor, M. (1986). Multi-item auctions. Journal of Political Economy, 94(4), 863–872. https://doi.org/10.1086/261411

    Article  Google Scholar 

  19. Desai, P. S., Shin, W., & Staelin, R. (2014). The company that you keep: When to buy a competitor’s keyword. Marketing Science, 33(4), 485–508. https://doi.org/10.1287/mksc.2013.0834

    Article  Google Scholar 

  20. Edelman, B., Ostrovsky, M., & Schwarz, M. (2007). Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords. American Economic Review, 97(1), 242–259. https://doi.org/10.1257/aer.97.1.242

    Article  Google Scholar 

  21. Fam, K. S. (2008). Attributes of likeable television commercials in Asia. Journal of Advertising Research, 48(3), 418–432. https://doi.org/10.2501/S0021849908080422

    Article  Google Scholar 

  22. Federal Trade Commission. (2012, March 26). Protecting consumer privacy in an era of rapid change. Technical Report. https://www.ftc.gov/opa/2012/03/privacyframework.shtm.

  23. Gal-Or, E., Gal-Or, R., & Penmetsa, N. (2018). The role of user privacy concerns in shaping competition among platforms. Information Systems Research, 29(3), 698–722. https://doi.org/10.1287/isre.2017.0730

    Article  Google Scholar 

  24. Galán, J., García, C., Felip, F., & Contero, M. (2021). Does a presentation media influence the evaluation of consumer products? A comparative study to evaluate virtual reality, virtual reality with passive haptics and a real setting. International Journal of Interactive Multimedia and Artificial Intelligence, 6(6), 196–207.

    Article  Google Scholar 

  25. Garrett, A. J., Shriver, S. K., & Du, S. (2020). Consumer privacy choice in online advertising: Who opts out and at what cost to industry? Marketing Science, 39(1), 33–51. https://doi.org/10.1287/mksc.2019.1198

    Article  Google Scholar 

  26. Goldfarb, A., & Tucker, C. (2011). Online display advertising: Targeting and obtrusiveness. Marketing Science, 30(3), 389–404. https://doi.org/10.1287/mksc.1100.0583

    Article  Google Scholar 

  27. Goldfarb, A., & Tucker, C. E. (2011). Privacy regulation and online advertising. Management Science, 57(1), 57–71. https://doi.org/10.1287/mnsc.1100.1246

    Article  Google Scholar 

  28. Goldfarb, A., & Tucker, C. (2012). Shifts in privacy concerns. American Economic Review, 102(3), 349–353. https://doi.org/10.1257/aer.102.3.349

    Article  Google Scholar 

  29. Hao, C., Yang, L. (2022). Platform advertising and targeted promotion: Paid or free? Electronic Commerce Research and Applications, 101178. Doi:https://doi.org/10.1016/j.elerap.2022.101178.

  30. Iyer, G., Soberman, D., & Villas-Boas, J. M. (2005). The targeting of advertising. Marketing Science, 24(3), 461–476. https://doi.org/10.1287/mksc.1050.0117

    Article  Google Scholar 

  31. Keyzer, F. D., Dens, N., & De Pelsmacker, P. (2022). How and when personalized advertising leads to brand attitude, click, and WOM intention. Journal of Advertising, 51(1), 39–56. https://doi.org/10.1080/00913367.2021.1888339

    Article  Google Scholar 

  32. Khorshidvand, B., Soleimani, H., Sibdari, S., & Esfahani, M.M.S. (2020). Revenue management in a multi-level multi-channel supply chain considering pricing, greening, and advertising decisions. Journal of Retailing and Consumer Services, 59, 102425. Doi: https://doi.org/10.1016/j.jretconser.2020.102425.

  33. Lamprinakos, G., Solon, M., Loannis, K., et al. (2022). Overt and covert customer data collection in online personalized advertising: The role of user emotions. Journal of Business Research, 141, 308–220. https://doi.org/10.1016/j.jbusres.2021.12.025

    Article  Google Scholar 

  34. Liao, M., & Sundar, S. S. (2021). When e-commerce personalization systems show and tell: Investigating the relative persuasive appeal of content-based versus collaborative filtering. Journal of Advertising, 51(2), 256–267. https://doi.org/10.1080/00913367.2021.1887013

    Article  Google Scholar 

  35. Li, X., & Raghunathan, S. (2014). Pricing and disseminating customer data with privacy awareness. Decison Support Systems, 59, 63–73. https://doi.org/10.1016/j.dss.2013.10.006

    Article  Google Scholar 

  36. Liu, B., Miltgen, C. L., Xia, H. (2022) Disclosure decisions and the moderating effects of privacy feedback and choice. Decision Support Systems, 113717, Doi: org/https://doi.org/10.1016/j.dss.2021.113717.

  37. Liu, D., Chen, J., & Whinston, A. B. (2015). Ex ante information and the design of keyword auctions. Information Systems Research, 21(1), 133–153. https://doi.org/10.1287/isre.1080.0225

    Article  Google Scholar 

  38. Liu, M., Yue, W., Qiu, L., & Li, J. (2020). An effective budget management framework for real-time bidding in online advertising. IEEE Access, 8, 131107–131118.

    Article  Google Scholar 

  39. Luo, M., Li, G., & Chen, X. (2021). Competitive location-based mobile coupon targeting strategy. Journal of Retailing and Consumer Services, 58, 102313. Doi: https://doi.org/10.1016/j.jretconser.2020.102313.

  40. Maille, P., & Tuffin, B. (2018). Auctions for online ad space among advertisers sensitive to both views and clicks. Electronic Commerce Research., 18, 485–506.

    Article  Google Scholar 

  41. Mattioli, D. (2012). On Orbitz, Mac users steered to pricier hotels. Wall Street Journal, August 23. https://www.wsj.com/video/on-orbitz-mac-users-see-costlier-hotel-options/7EA59549-2CFD-4D9E-9D63-5BBB0EC1DAE2.html.

  42. Mercy, M., & Daniel, K. M. (2019). Ethics of mobile behavioral advertising: Antecedents and outcomes of perceived ethical value of advertised brands. Journal of Business Research, 95, 464–478. https://doi.org/10.1016/j.jbusres.2018.07.037

    Article  Google Scholar 

  43. Metz, C. (2015, September 21). Facebook doesn’t make as much money as it could—on purpose. Wired. https://www.wired.com/2015/09/facebook-doesnt-make-much-money-couldon-purpose/.

  44. Montes, R., Sand-Zantman, W., & Valletti, T. M. (2019). The value of personal information in online markets with endogenous privacy. Management Science, 65(3), 1342–1362. https://doi.org/10.1287/mnsc.2017.2989

    Article  Google Scholar 

  45. Rutz, O., & Bucklin, R. E. (2011). From generic to branded: A model of spillover in paid search advertising. Marketing Research, 48(1), 87–102. https://doi.org/10.2139/ssrn.1024766

    Article  Google Scholar 

  46. Rutz, O., Trusov, M., & Bucklin, R. E. (2011). Modeling indirect effects of paid search advertising: Which keywords lead to more future visits. Marketing Science, 30(4), 646–665. https://doi.org/10.1287/mksc.1110.0635

    Article  Google Scholar 

  47. Salop, S. C. (1979). Monopolistic competition with outside goods. The RAND Journal of Economics, 10(1), 141–156. https://doi.org/10.2307/3003323

    Article  Google Scholar 

  48. Sayedi, A. (2018). Real-time bidding in online display advertising. Marketing Science, 37(4), 553–568. https://doi.org/10.2139/ssrn.2916875

    Article  Google Scholar 

  49. Scarpi, D., Pizzi, G., & Matta, S. (2022). Digital technologies and privacy: State of the art and research directions. Psychology & Marketing, 39(9), 1687–1697.

    Article  Google Scholar 

  50. Schultz, C. D. (2020). The impact of ad positioning in search engine advertising: A multifaceted decision problem. Electronic Commerce Research, 20, 945–968.

    Article  Google Scholar 

  51. Shen, Q., & Villas-Boas, J. M. (2017). Behavior-based advertising. Management Science, 64(5), 2047–2064. https://doi.org/10.1287/mnsc.2016.2719

    Article  Google Scholar 

  52. Shi, H., Liu, Y., & Petruzzi, N. C. (2019). Informative advertising in a distribution channel. European Journal of Operational Research, 274(2), 773–787.

    Article  Google Scholar 

  53. Shin, W. (2015). Keyword search advertising and limited budgets. Marketing Science, 34(6), 882–896. https://doi.org/10.1287/mksc.2015.0915

    Article  Google Scholar 

  54. Smit, E. G., Van Meurs, L., & Neijens, P. C. (2006). Effects of advertising likeability: A 10-year perspective. Journal of Advertising Research, 46(1), 73–83. https://doi.org/10.2501/S0021849906060089

    Article  Google Scholar 

  55. Song, Y. (2021). Research on the application of computer graphic advertisement design based on a genetic algorithm and TRIZ theory. International Journal of Interactive Multimedia and Artificial Intelligence, 7(4), 44–52.

    Article  Google Scholar 

  56. Souiden, N., Chaouali, W., & Baccouche, M. (2019). Consumers’ attitude and adoption of location-based coupons: The case of the retail fast food sector. Journal of Retailing and Consumer Services, 47, 116–132. https://doi.org/10.1016/j.jretconser.2018.11.009

    Article  Google Scholar 

  57. Thaler, R. (1985). Mental accounting and consumer choice. Marketing Science, 4(3), 199–214. https://doi.org/10.1287/mksc.4.3.199

    Article  Google Scholar 

  58. Tucker, C. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5), 546–562. https://doi.org/10.1509/jmr.10.0355

    Article  Google Scholar 

  59. Wang, W., Li, G., Fung, R., & Cheng, T. C. E. (2019). Mobile advertising and traffic conversion: The effects of front traffic and spatial competition. Journal of Interactive Marketing, 47(8), 84–101. https://doi.org/10.1016/j.intmar.2019.02.001

    Article  Google Scholar 

  60. Wang, X., & Liu, Z. (2019). Online engagement in social media: A cross-cultural comparison. Computers in Human Behavior, 97(8), 137–150.

    Article  Google Scholar 

  61. Xu, Y., & Zhu, S. Dutta, (2023). Adverse inclusion of asymmetric advertisers in position auctions, International Journal of Research in Marketing, Available online 25 January 2023. https://doi.org/10.1016/j.ijresmar.2023.01.001.

Download references

Acknowledgements

We are thankful to the associate editor and anonymous reviewers who provided valuable suggestions that led to a considerable improvement in the organization and presentation of this manuscript. All authors have contributed equally to the paper. We declare that we have no conflict of interest.

Funding

This work was supported by the National Natural Science Foundation of China [Grant number 71771122] and China Scholarship Council [Grant 202006840127].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Lemma 1

We consider the situation where the seller places mass advertisements. Given that \(n\) sellers will join the auction, each seller knows its own bidding \(b_{\left( . \right)}^{M}\) but does not know their opponent sellers’ biddings. However, they can have a belief, and therefore an estimation about these biddings. To make our discussion simple, the opponents’ biddings are assumed to be drawn independently from the cumulative distribution function \(F\left( x \right)\) with density \(f\left( x \right) \in \left[ {0,\infty } \right)\).\(F_{T} \left( t \right) = P\left( {T \le t} \right)\) represents the probability that the random variable \(T\) is less than or equal to a certain bidding \(t\). Without loss of generality, we look at seller 1, who sells the product with price \(p_{1}^{M}\) and chooses a bid \(b_{1}^{M}\) to maximize its expected profits. Assume that seller \(i\) places the highest bid among seller 2, 3, …, n. With the rule of the second-price auction, seller 1’s expected profit can be determined by:

$$\pi _{1}^{M} \left( {p_{1}^{M} ,b_{i}^{M} ,b_{{\left( . \right)}}^{M} } \right) = \left\{ {\begin{array}{*{20}l} {p_{1}^{M} - b_{i}^{M} \;\;,\quad if\;b_{1}^{M} > b_{i}^{M} > \max \left\{ {b_{2}^{M} ,b_{3}^{M} ,...,b_{n}^{M} } \right\}} \hfill \\ {0\quad ,\quad if\;b_{1}^{M} < \max \left\{ {b_{2}^{M} ,b_{3}^{M} ,...,b_{n}^{M} } \right\}} \hfill \\ \end{array} } \right.$$
(A.1)

where the probability of \(b_{1}^{M} > b_{i}^{M} > \max \left\{ {b_{2}^{M} ,b_{3}^{M} ,...,b_{n}^{M} } \right\}\) is \(\int_{0}^{{b_{1}^{M} }} d F\left( x \right)^{n - 1} = \int_{0}^{{b_{1}^{M} }} {\left( {n - 1} \right)f\left( x \right)} F\left( x \right)^{n - 2} dx\). Thus, the expected profit can be defined by:

$$\pi_{1}^{M} \left( {p_{1}^{M} ,b_{i}^{M} ,b_{\left( . \right)}^{M} } \right) = \int_{0}^{{b_{1}^{M} }} {\left( {p_{1} - x} \right)} \left( {n - 1} \right)f\left( x \right)F\left( x \right)^{n - 2} dx$$
(A.2)

On the basis of the profit function, if \(b_{1}^{M} > p_{1}^{M}\) then we have:

$$\pi_{1}^{M} \left( {p_{1}^{M} ,b_{i}^{M} ,b_{\left( . \right)}^{M} } \right) = \int_{0}^{{p_{1}^{M} }} {\left( {p_{1} - x} \right)} \left( {n - 1} \right)f\left( x \right)F\left( x \right)^{n - 2} dx + \int_{{p_{1}^{M} }}^{{b_{1}^{M} }} {\left( {p_{1} - x} \right)} \left( {n - 1} \right)f\left( x \right)F\left( x \right)^{n - 2} dx$$
(A.3)

where the second part of the profit function may be negative. Thus, the expected profit will increase when \(b_{1}^{M}\) decreases to \(p_{1}^{M}\).

Conversely, if \(b_{1}^{M} < p_{1}^{M}\) then the second part of the profit function may be positive while it does not reach the maximum. When \(b_{1}^{M}\) increases to \(p_{1}^{M}\), the expected profit will increase by \(\int_{{b_{1}^{M} }}^{{p_{1}^{M} }} {\left( {p_{1} - x} \right)} \left( {n - 1} \right)f\left( x \right)F\left( x \right)^{n - 2} dx\). Therefore, \(b_{1}^{M} = p_{1}^{M}\) is the dominant optimal strategy.

Consequently, \(b_{1}^{M} = p_{1}^{M}\) is the dominant optimal strategy for any seller \(i\) when the seller places a mass advertisement. When the seller places a targeted advertisement, we use superscript ‘T’ instead of ‘M,’ and the proof method is the same.

Proof of Proposition 1

Based on Eqs. (7), we can easily find that \(\partial b_{i}^{{M^{*} }} /\partial v = 1/2 > 0\); based on Eqs. (10), we can find for any \(0 \le E\left( Y \right) \le E\left( Y \right)^{*}\), we have \(\partial p_{i}^{{M^{*} }} /\partial E\left( Y \right) \ge 0\); for any \(E\left( Y \right)^{*} < E\left( Y \right) \le 1\), we have \(\partial p_{i}^{{M^{*} }} /\partial E\left( Y \right) \le 0\). Specifically, \(E\left( Y \right)^{*} = \alpha_{i} /2c_{i}\).

Proof of Proposition 2

4.1 (1) Demand comparison

When a seller uses consumer information, the targeted advertisement yields the optimal demand \(D_{i}^{{T^{*} }}\); If not, the seller places a mass advertisement and yields the optimal demand \(D_{i}^{{M^{*} }}\). Then, we compare the optimal demand: \(D_{i}^{{M^{*} }} - D_{i}^{{T^{*} }} { = }\frac{v}{t} - \frac{{E\left( Y \right)\left[ {\alpha_{i} - c_{i} E\left( Y \right)} \right] + v - p_{i + 1}^{T} }}{t}\), we can find:

(a) when \(p_{i + 1} \le \alpha_{i}^{2} /4c_{i}\), for any \(E\left( Y \right) \in \left( {\frac{{a - \sqrt {a^{2} - 4cp_{i + 1} } }}{{2c_{i} }},\frac{{a + \sqrt {a^{2} - 4cp_{i + 1} } }}{{2c_{i} }}} \right)\), \(D_{i}^{{M^{*} }} \le D_{i}^{{T^{*} }}\); for any \(E\left( Y \right) \in \left[ {0,\frac{{a - \sqrt {a^{2} - 4cp_{i + 1} } }}{{2c_{i} }}} \right]\) and \(E\left( Y \right) \in \left[ {\frac{{a + \sqrt {a^{2} - 4cp_{i + 1} } }}{{2c_{i} }},1} \right]\), \(D_{i}^{{M^{*} }} \ge D_{i}^{{T^{*} }}\);

(b) when \(p_{i + 1} > \alpha_{i}^{2} /4c_{i}\), for any \(E\left( Y \right)\), we have \(D_{i}^{{M^{*} }} > D_{i}^{{T^{*} }}\).

(2) Profit comparison

Next, comparing the optimal profit under different advertisements we have \(\pi_{i}^{{M^{*} }} - \pi_{i}^{{T^{*} }} = \frac{{v^{2} - 2tp_{i + 1}^{M} - \left\{ {v - p_{i + 1}^{T} + E\left( Y \right)\left[ {\alpha_{i} - E\left( Y \right)c_{i} } \right]} \right\}^{2} }}{2t}\). When \(\pi_{i}^{{M^{*} }} - \pi_{i}^{{T^{*} }} = 0\), we can obtain \(E\left( Y \right) = \frac{{\alpha_{i} \pm \sqrt { - 4c_{i} \left( { - v + p_{i + 1}^{T} \pm \sqrt {v^{2} - 2tp_{i + 1}^{M} } } \right) + \alpha_{i}^{2} } }}{{2c_{i} }}\). Since \(v^{2} - 2tp_{i + 1}^{M} > 0\), \(v > p_{i + 1}^{T}\), \(0 \le E\left( Y \right) \le 1\), we can find:

  1. (a)

    when \(p_{i + 1} \le \alpha_{i}^{2} /4c_{i}\), for any \(E\left( Y \right)\) we have \(\pi_{i}^{{M^{*} }} \ge \pi_{i}^{{T^{*} }}\);

  2. (b)

    when \(p_{i + 1} > \alpha_{i}^{2} /4c_{i}\), for any \(E\left( Y \right) \in \left[ {0,\frac{{\alpha_{i} + \sqrt { - 4c_{i} \left( { - v + p_{i + 1}^{T} - \sqrt {v^{2} - 2tp_{i + 1}^{M} } } \right) + \alpha_{i}^{2} } }}{{2c_{i} }}} \right]\), we have \(\pi_{i}^{{M^{*} }} \le \pi_{i}^{{T^{*} }}\); for any \(E\left( Y \right) \in \left( {\frac{{\alpha_{i} + \sqrt { - 4c_{i} \left( { - v + p_{i + 1}^{T} - \sqrt {v^{2} - 2tp_{i + 1}^{M} } } \right) + \alpha_{i}^{2} } }}{{2c_{i} }},1} \right]\), \(\pi_{i}^{{M^{*} }} \ge \pi_{i}^{{T^{*} }}\).

Proof of Proposition 4

According to the equilibrium result in Proposition 4 and the constraint condition \(0 \le \alpha_{i} - \alpha_{{i{ + }1}} \le 2\left( {c_{i} - c_{i + 1} } \right)\), we can easily find that for any \(0 \le E\left( Y \right) \le \left( {\alpha_{i} - \alpha_{i + 1} } \right)/2\left( {c_{i} - c_{i + 1} } \right)\), we have \(\partial b_{i}^{{T^{*} }} /\partial E\left( Y \right) \ge 0\); for any \(\left( {\alpha_{i} - \alpha_{i + 1} } \right)/2\left( {c_{i} - c_{i + 1} } \right) < E\left( Y \right) \le 1\), we have \(\partial b_{i}^{{T^{*} }} /\partial E\left( Y \right) \le 0\).

Proof of Proposition 5

Based on the equilibrium result in Proposition 4, we can easily find that: (a)\(\partial b_{i}^{{T^{*} }} /\partial E\left( Y \right)\partial c_{i} = - E\left( Y \right) < 0\), \(\partial b_{i}^{{T^{*} }} /\partial E\left( Y \right)\partial c_{i + 1} = E\left( Y \right) > 0\); (b) \(\partial b_{i}^{{T^{*} }} /\partial E\left( Y \right)\partial \alpha_{i} { = }1/2 > 0\); \(\partial b_{i}^{{T^{*} }} /\partial E\left( Y \right)\partial \alpha_{i + 1} = - 1/2 < 0\).

Proof of Proposition 6

As \(\partial D_{i}^{{T^{*} }} /\partial E\left( y \right) = \frac{{2E\left( Y \right)\left( {c_{i + 1} - c_{i} } \right) + a_{i} - a_{i + 1} }}{2nt}\), it’s easy to see if \(0 \le E\left( Y \right) \le \frac{{\alpha_{i} - \alpha_{i + 1} }}{{2\left( {c_{i} - c_{i + 1} } \right)}}\), we have \(\partial D_{i}^{{T^{*} }} /\partial E\left( y \right) \ge 0\); if \(\frac{{\alpha_{i} - \alpha_{i + 1} }}{{2\left( {c_{i} - c_{i + 1} } \right)}} < E\left( Y \right) \le 1\), we have \(\partial D_{i}^{{T^{*} }} /\partial E\left( Y \right) \le 0\). Similarly, when \(0 \le E\left( Y \right) \le \frac{{\alpha_{i} - \alpha_{i + 1} }}{{2\left( {c_{i} - c_{i + 1} } \right)}}\), \(\partial \pi_{i}^{{T^{*} }} /\partial E\left( y \right) \ge 0\); when \(\frac{{\alpha_{i} - \alpha_{i + 1} }}{{2\left( {c_{i} - c_{i + 1} } \right)}} < E\left( Y \right) \le 1\), \(\partial \pi_{i}^{{T^{*} }} /\partial E\left( y \right) \le 0\).

Proof of Proposition 7

First, we analyze the effect of the level of consumer information sharing on the advertising bidding. Based on the equilibrium result in Proposition 4, it is easy to get \(\partial b_{i + 1}^{{T^{*} }} /\partial E\left( y \right) = \frac{{2E\left( y \right)\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right) - a_{i} + 2a_{i + 1} - a_{i + 2} }}{4}\). Therefore, when \(0 \le E\left( Y \right) \le \frac{{\alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} }}{{2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)}}\), we have \(\partial b_{i + 1}^{{T^{*} }} /\partial E\left( Y \right) \le 0\); when \(\frac{{\alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} }}{{2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)}} < E\left( Y \right) \le 1\), we have \(\partial b_{i + 1}^{{T^{*} }} /\partial E\left( Y \right) \ge 0\). We then analyzed the effect of the level of consumer information sharing on the optimal demand and optimal profit. The demand function \(D_{i + 1}^{{T^{*} }}\) yields the optimal level of consumer information sharing \(E\left( Y \right)^{*} = \frac{{\alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} }}{{2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)}}\). To support \(E\left( Y \right)^{*} \in [0,1]\), we assert that \(0 \le \alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} \le 2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)\). As \(\frac{{\partial D_{i + 1}^{{T^{*} }} }}{\partial E\left( Y \right)} = \frac{{2E\left( Y \right)\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right) - a_{i} + 2a_{i + 1} - a_{i + 2} }}{4t}\), we can find when \(0 \le E\left( Y \right) \le \frac{{\alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} }}{{2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)}}\), \(\partial D_{i + 1}^{{T^{*} }} /\partial E\left( y \right) \le 0\); when \(\frac{{\alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} }}{{2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)}} < E\left( Y \right) \le 1\),\(\partial D_{i + 1}^{{T^{*} }} /\partial E\left( Y \right) \ge 0\). Similarly, when \(0 \le E\left( Y \right) \le \frac{{\alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} }}{{2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)}}\), \(\partial \pi_{i + 1}^{{T^{*} }} /\partial E\left( Y \right) \le 0\); when \(\frac{{\alpha_{i} - 2\alpha_{i + 1} + \alpha_{i + 2} }}{{2\left( {c_{i} - 2c_{i + 1} + c_{i + 2} } \right)}} < E\left( y \right) < 1\),\(\partial \pi_{i + 1}^{{T^{*} }} /\partial E\left( Y \right) \ge 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, L., Wang, D. et al. Advertising bidding involving consumer information sharing. Electron Commer Res (2023). https://doi.org/10.1007/s10660-023-09712-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10660-023-09712-6

Keywords

Navigation