Skip to main content

Advertisement

Log in

Replenishment and delivery optimization for unmanned vending machines service system based on fuzzy clustering

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

The optimization of replenishment and delivery problem (RDP) for unmanned vending machines supply chain network (UVM-SCN) is challenging due to frequent service interruptions and supply–demand mismatches in operations. Many studies adopt proactive resilience strategies to solve those challenges. However, since most proactive resilience strategies are weak in providing dynamic redundancy towards frequent interruptions, we propose a two-stage resilience strategy to optimize the RDP for UVM-SCN, which redesigns the structure of UVM-SCN and allocates appropriate suppliers for different customers. The first stage focuses on the optimization of UVM-SCN structure. Based on the analysis of customers’ preferences, UVMs with similar geographic locations and customer preferences are clustered into closely related demand zones through the improved fuzzy C-means algorithm. The mutual rescue strategy is applied in each demand zone when interruptions occur to achieve quick transfer of products and customers. In the second stage, the dynamic matching mechanism, which integrates suppliers’ capabilities and customers’ requirements, is proposed to guarantee the provision of various products. On this basis, a scheduling model is established to optimize the RDP of UVM-SCN considering total cost, completion time and customers’ satisfaction, and solved by the genetic algorithm. The numerical studies show that the optimal solution can guarantee service reliability and satisfy customers’ demands at a competitive cost under continuous uncertainties, thereby demonstrating the validity and effectiveness of the model and the corresponding algorithm. This work extends the research on SCN structural resilience under frequent interruptions and contributes to the UVM-SCN resilience management by integrating suppliers’ capability and customers’ multi-dimensional requirements into one research framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhong, X., Lee, H. K., & Li, J. (2017). From production systems to health care delivery systems: A retrospective look on similarities, difficulties and opportunities. International Journal of Production Research, 55(14), 4212–4227. https://doi.org/10.1080/00207543.2016.1277276

    Article  Google Scholar 

  2. Grzybowska, H., Kerferd, B. B., Gretton, C., & Waller, S. T. (2020). A simulation optimisation genetic algorithm approach to product allocation in vending machine systems. Expert Systems with Applications, 145, 113110. https://doi.org/10.1016/j.eswa.2019.113110

    Article  Google Scholar 

  3. Zhang, H., Li, D., Ji, Y., Zhou, H., Wu, W., & Liu, K. (2019). Towards new retail: A benchmark dataset for smart unmanned vending machines. IEEE Transactions on Industrial Informatics, 16(12), 7722–7731. https://doi.org/10.1109/tii.2019.2954956

    Article  Google Scholar 

  4. Li, J., Blumenfeld, D. E., Huang, N., & Alden, J. M. (2009). Throughput analysis of production systems: Recent advances and future topics. International Journal of Production Research, 47(14), 3823–3851. https://doi.org/10.1080/00207540701829752

    Article  Google Scholar 

  5. Tan, W. J., Zhang, A. N., & Cai, W. (2019). A graph-based model to measure structural redundancy for supply chain resilience. International Journal of Production Research, 57(20), 6385–6404. https://doi.org/10.1080/00207543.2019.1566666

    Article  Google Scholar 

  6. Hosseini, S., Ivanov, D., & Dolgui, A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research: Part E, 125, 285–307. https://doi.org/10.1016/j.tre.2019.03.001

    Article  Google Scholar 

  7. Yoon, J., Talluri, S., Yildiz, H., & Ho, W. (2018). Models for supplier selection and risk mitigation: A holistic approach. International Journal of Production Research, 56(10), 3636–3661. https://doi.org/10.1080/00207543.2017.1403056

    Article  Google Scholar 

  8. Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10), 2904–2915. https://doi.org/10.1080/00207543.2020.1750727

    Article  Google Scholar 

  9. Yu, W., Jacobs, M. A., Chavez, R., & Yang, J. (2019). Dynamism, disruption orientation, and resilience in the supply chain and the impacts on financial performance: A dynamic capabilities perspective. International Journal of Production Economics, 218, 352–362. https://doi.org/10.1016/j.ijpe.2019.07.013

    Article  Google Scholar 

  10. Wang, J., Dou, R., Muddada, R. R., & Zhang, W. (2017). Management of a holistic supply chain network for proactive resilience: Theory and case study. Computers & Industrial Engineering, 125, 668–677. https://doi.org/10.1016/j.cie.2017.12.021

    Article  Google Scholar 

  11. Wang, J. W., Liu, D., Ip, W. H., Zhang, W. J., & Deters, R. (2014). Integration of system dynamics, aspect-programming, and objective-orientation in system information modeling. IEEE Transactions on Industrial Informatics, 10(2), 847–853. https://doi.org/10.1109/tii.2014.2300703

    Article  Google Scholar 

  12. Wang, J. W., Ip, W. H., Muddada, R. R., Huang, J. L., & Zhang, W. J. (2013). On petri net implementation of proactive resilient holistic supply chain networks. International Journal of Advanced Manufacturing Technology, 69(1–4), 427–437. https://doi.org/10.1007/s00170-013-5022-x

    Article  Google Scholar 

  13. Blackhurst, J., Craighead, C. W., Elkins, D., & Handfield, R. B. (2005). An empirically derived agenda of critical research issues for managing supply-chain disruptions. International Journal of Production Research, 43(19), 4067–4081. https://doi.org/10.1080/00207540500151549

    Article  Google Scholar 

  14. Wagner, S. M., & Bode, C. (2006). An empirical investigation into supply chain vulnerability. Journal of Purchasing and Supply Management, 12(6), 301–312. https://doi.org/10.1016/j.pursup.2007.01.004

    Article  Google Scholar 

  15. Christopher, M., & Holweg, M. (2011). Supply chain 2.0: Managing supply chains in the era of turbulence. International Journal of Physical Distribution & Logistics Management, 41(1), 63–82. https://doi.org/10.1108/09600031111101439

    Article  Google Scholar 

  16. Stefanovic, D., Stefanovic, N., & Radenkovic, B. (2009). Supply network modelling and simulation methodology. Simulation Modelling Practice and Theory, 17(4), 743–766. https://doi.org/10.1016/j.simpat.2009.01.001

    Article  Google Scholar 

  17. Ghadge, A., Dani, S., & Kalawsky, R. S. (2012). Supply chain risk management: Present and future scope. The International Journal of Logistics Management, 23(3), 313–339. https://doi.org/10.1108/09574091211289200

    Article  Google Scholar 

  18. Pereira, C. R., Christopher, M., & Silva, A. L. D. (2014). Achieving supply chain resilience: The role of procurement. Supply Chain Management, 19, 626–642. https://doi.org/10.1108/scm-09-2013-0346

    Article  Google Scholar 

  19. Simangunsong, E., Hendry, L. C., & Stevenson, M. (2012). Supply-chain uncertainty: A review and theoretical foundation for future research. International Journal of Production Research, 50(16), 4493–4523. https://doi.org/10.1080/00207543.2011.613864

    Article  Google Scholar 

  20. Park, K., Min, H., & Min, S. (2016). Inter-relationship among risk taking propensity, supply chain security practices, and supply chain disruption occurrence. Journal of Purchasing and Supply Management, 22(2), 120–130. https://doi.org/10.1016/j.pursup.2015.12.001

    Article  Google Scholar 

  21. Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management. Journal of business logistics., 29(1), 133–155. https://doi.org/10.1002/j.2158-1592.2008.tb00072.x

    Article  Google Scholar 

  22. Xu, J., Hu, Z., Zou, Z., Zou, J., Hu, X., Liu, L., & Zheng, L. (2020). Design of smart unstaffed retail shop based on IOT and artificial intelligence. IEEE Access, 8, 147728–147737. https://doi.org/10.1109/ACCESS.2020.3014047

    Article  Google Scholar 

  23. Liu, L., Zhou, B., Zou, Z., Yeh, S. C., & Zheng, L. (2018). A smart unstaffed retail shop based on artificial intelligence and IoT. In 2018 23rd International workshop on computer aided modeling and design of communication links and networks (CAMAD) (pp. 1–4). https://doi.org/10.1109/CAMAD.2018.8514988

  24. Zheng, Y., & Li, Y. (2018). Unmanned retail’s distribution strategy based on sales forecasting. In 2018 8th International conference on logistics, informatics and service sciences (LISS) (pp. 1–5). https://doi.org/10.1109/LISS.2018.8593273

  25. Sibanda, V., Munetsi, L., Mpofu, K., Murena, E., & Trimble, J. (2020). Design of a high-tech vending machine. Procedia CIRP, 91, 678–683. https://doi.org/10.1016/j.procir.2020.04.133

    Article  Google Scholar 

  26. Murena, E., Sibanda, V., Sibanda, S., & Mpofu, K. (2020). Design of a control system for a vending machine. Procedia CIRP, 91, 758–763. https://doi.org/10.1016/j.procir.2020.04.136

    Article  Google Scholar 

  27. Ali, A., Mahfouz, A., & Arisha, A. (2017). Analysing supply chain resilience: Integrating the constructs in a concept mapping framework via a systematic literature review. Supply Chain Management, 22(1), 16–39. https://doi.org/10.1108/scm-06-2016-0197

    Article  Google Scholar 

  28. Ribeiro, J. P., & Barbosa-Póvoa, A. P. F. D. (2018). Supply chain resilience: Definitions and quantitative modelling approaches: A literature review. Computers & Industrial Engineering, 115, 109–122. https://doi.org/10.1016/j.cie.2017.11.006

    Article  Google Scholar 

  29. Fattahi, M., Govindan, K., & Maihami, R. (2020). Stochastic optimization of disruption-driven supply chain network design with a new resilience metric. International Journal of Production Economics, 230, 107755. https://doi.org/10.1016/j.ijpe.2020.107755

    Article  Google Scholar 

  30. Spiegler, V., Naim, M., & Wikner, J. (2012). A control engineering approach to the assessment of supply chain resilience. International Journal of Production Research, 50, 6162–6187. https://doi.org/10.1080/00207543.2012.710764

    Article  Google Scholar 

  31. Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. International Journal of Logistics Management, 20(1), 124–143. https://doi.org/10.1108/09574090910954873

    Article  Google Scholar 

  32. Kamalahmadi, M., & Parast, M. M. (2017). An assessment of supply chain disruption mitigation strategies. International Journal of Production Economics, 184, 210–230. https://doi.org/10.1016/j.ijpe.2016.12.011

    Article  Google Scholar 

  33. Behzadi, G., O’Sullivan, M. J., & Olsen, T. L. (2020). On metrics for supply chain resilience. European Journal of Operational Research, 287(1), 145–158. https://doi.org/10.1016/j.ejor.2020.04.040

    Article  Google Scholar 

  34. Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. International Journal of Production Economics, 171, 116–133. https://doi.org/10.1016/j.ijpe.2015.10.023

    Article  Google Scholar 

  35. Dolgui, A., Ivanov, D., & Sokolov, B. (2020). Reconfigurable supply chain: The X-network. International Journal of Production Research, 58(13), 4138–4163. https://doi.org/10.1080/00207543.2020.1774679

    Article  Google Scholar 

  36. Hohenstein, N. O., Feisel, E., Hartmann, E., & Giunipero, L. (2015). Research on the phenomenon of supply chain resilience: A systematic review and paths for further investigation. International Journal of Physical Distribution & Logistics Management, 45(1/2), 90–117. https://doi.org/10.1108/ijpdlm-05-2013-0128

    Article  Google Scholar 

  37. Hosseini, S., & Barker, K. (2016). A Bayesian network model for resilience-based supplier selection. International Journal of Production Economics, 180, 68–87. https://doi.org/10.1016/j.ijpe.2016.07.007

    Article  Google Scholar 

  38. Yildiz, H., Yoon, J., Talluri, S., & Ho, W. (2016). Reliable supply chain network design. Decision Sciences, 47(4), 661–698. https://doi.org/10.1111/deci.12160

    Article  Google Scholar 

  39. Chopra, S., & Sodhi, M. S. (2004). Supply-chain breakdown. MIT Sloan Management Review, 46(1), 53–61.

    Google Scholar 

  40. Turnquist, M., & Vugrin, E. (2013). Design for resilience in infrastructure distribution networks. Environment Systems & Decisions, 33(1), 104–120. https://doi.org/10.1007/s10669-012-9428-z

    Article  Google Scholar 

  41. Khalili, S. M., Jolai, F., & Torabi, S. A. (2017). Integrated production–distribution planning in two-echelon systems: A resilience view. International Journal of Production Research, 55(4), 1040–1064. https://doi.org/10.1080/00207543.2016.1213446

    Article  Google Scholar 

  42. Jabbarzadeh, A., Fahimnia, B., & Sabouhi, F. (2018). Resilient and sustainable supply chain design: Sustainability analysis under disruption risks. International Journal of Production Research, 56(17), 5945–5968. https://doi.org/10.1080/00207543.2018.1461950

    Article  Google Scholar 

  43. Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management science, 52(5), 639–657. https://doi.org/10.1287/mnsc.1060.0515

    Article  Google Scholar 

  44. Wang, X., Herty, M., & Zhao, L. (2016). Contingent rerouting for enhancing supply chain resilience from supplier behavior perspective. International Transactions in Operational Research, 23(4), 775–796. https://doi.org/10.1111/itor.12151

    Article  Google Scholar 

  45. Khaled, A. A., Jin, M., Clarke, D. B., & Hoque, M. A. (2015). Train design and routing optimization for evaluating criticality of freight railroad infrastructures. Transportation Research Part B: Methodological, 71, 71–84. https://doi.org/10.1016/j.trb.2014.10.002

    Article  Google Scholar 

  46. Mancheri, N. A., Sprecher, B., Deetman, S., Young, S. B., Bleischwitz, R., Dong, L., & Tukker, A. (2018). Resilience in the tantalum supply chain. Resources, Conservation and Recycling, 129, 56–69. https://doi.org/10.1016/j.resconrec.2017.10.018

    Article  Google Scholar 

  47. Rezapour, S., Farahani, R. Z., & Pourakbar, M. (2017). Resilient supply chain network design under competition: A case study. European Journal of Operational Research, 259(3), 1017–1035. https://doi.org/10.1016/j.ejor.2016.11.041

    Article  Google Scholar 

  48. Namdar, J., Li, X., Sawhney, R., & Pradhan, N. (2018). Supply chain resilience for single and multiple sourcing in the presence of disruption risks. International Journal of Production Research, 56(6), 2339–2360. https://doi.org/10.1080/00207543.2017.1370149

    Article  Google Scholar 

  49. Sabouhi, F., Pishvaee, M. S., & Jabalameli, M. S. (2018). Resilient supply chain design under operational and disruption risks considering quantity discount: A case study of pharmaceutical supply chain. Computers & Industrial Engineering, 126, 657–672. https://doi.org/10.1016/j.cie.2018.10.001

    Article  Google Scholar 

  50. Bode, C., & Wagner, S. M. (2015). Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions. Journal of Operations Management, 36, 215–228. https://doi.org/10.1016/j.jom.2014.12.004

    Article  Google Scholar 

  51. Tan, W. J., Cai, W., & Zhang, A. N. (2020). Structural-aware simulation analysis of supply chain resilience. International Journal of Production Research, 58(17), 5175–5195. https://doi.org/10.1080/00207543.2019.1705421

    Article  Google Scholar 

  52. Liu, R., Tao, Y., Hu, Q., & Xie, X. (2017). Simulation-based optimisation approach for the stochastic two-echelon logistics problem. International Journal of Production Research, 55(1), 187–201. https://doi.org/10.1080/00207543.2016.1201221

    Article  Google Scholar 

  53. Hosseini, S., & Ivanov, D. (2020). Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Expert Systems With Applications, 161, 113649. https://doi.org/10.1108/ijpdlm-05-2013-0128

    Article  Google Scholar 

  54. Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., Roubaud, D., & Foropon, C. (2019). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. International Journal of Production Research, 59(1), 110–128. https://doi.org/10.1080/00207543.2019.1582820

    Article  Google Scholar 

  55. Rusdiansyah, A., & Tsao, D. (2005). An integrated model of the periodic delivery problems for vending-machine supply chains. Journal of Food Engineering, 70(3), 421–434. https://doi.org/10.1016/j.jfoodeng.2004.05.073

    Article  Google Scholar 

  56. Poon, T. C., Choy, K. L., Cheng, C. K., & Lao, S. I. (2010). A real-time replenishment system for vending machine industry. In 2010 8th IEEE International conference on industrial informatics (pp. 209–213). https://doi.org/10.1109/INDIN.2010.5549432

  57. Park, Y.-B., & Yoo, J.-S. (2012). A heuristic for the inventory management of smart vending machine systems. Journal of Industrial Engineering and Management, 5(2), 354–363. https://doi.org/10.3926/jiem.587

    Article  Google Scholar 

  58. Grzybowska, H., Kerferd, B., Gretton, C., & Waller, S. T. (2020). A simulation-optimisation genetic algorithm approach to product allocation in vending machine systems. Expert Systems with Applications, 145, 113110. https://doi.org/10.1016/j.eswa.2019.113110

    Article  Google Scholar 

  59. Anupindi, R., Dada, M., & Gupta, S. (1998). Estimation of consumer demand with stock-out based substitution: An application to vending machine products. Marketing Science, 17(4), 406–423. https://doi.org/10.1287/mksc.17.4.406

    Article  Google Scholar 

  60. Pan, J. N., & Nguyen, H. T. N. (2015). Achieving customer satisfaction through product–service systems. European Journal of Operational Research, 247(1), 179–190. https://doi.org/10.1016/j.ejor.2015.05.018

    Article  Google Scholar 

  61. Simon, F., & Usunier, J. C. (2007). Cognitive, demographic, and situational determinants of service customer preference for personnel-in-contact over self-service technology. International Journal of Research in Marketing, 24(2), 163–173. https://doi.org/10.1016/j.ijresmar.2006.11.004

    Article  Google Scholar 

  62. Grigoroudis, E., & Siskos, Y. (2002). Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method. European Journal of Operational Research, 143(1), 148–170. https://doi.org/10.1016/s0377-2217(01)00332-0

    Article  Google Scholar 

  63. Kumar, A., Shankar, R., & Debnath, R. M. (2015). Analysing customer preference and measuring relative efficiency in telecom sector: A hybrid fuzzy AHP/DEA study. Telematics and Informatics, 32(3), 447–462. https://doi.org/10.1016/j.tele.2014.10.003

    Article  Google Scholar 

  64. Cao, L., Ou, Y., & Yu, P. S. (2012). Coupled behavior analysis with applications. IEEE Transactions on Knowledge and Data Engineering, 24(8), 1378–1392. https://doi.org/10.1109/tkde.2011.129

    Article  Google Scholar 

  65. Meo, P. D., Nocera, A., Terracina, G., & Ursino, D. (2011). Recommendation of similar users, resources and social networks in a social internetworking scenario. Information Sciences, 181(7), 1285–1305. https://doi.org/10.1016/j.ins.2010.12.001

    Article  Google Scholar 

  66. Cao, L. (2010). In-depth behavior understanding and use: The behavior informatics approach. Information Sciences, 180(17), 3067–3085. https://doi.org/10.1016/j.ins.2010.03.025

    Article  Google Scholar 

  67. Shokouhyar, S., Shokoohyar, S., & Safari, S. (2020). Research on the influence of after-sales service quality factors on customer satisfaction. Journal of Retailing and Consumer Services, 56, 102139. https://doi.org/10.1016/j.jretconser.2020.102139

    Article  Google Scholar 

  68. Ahani, A., et al. (2019). Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services, 51, 331–343. https://doi.org/10.1016/j.jretconser.2019.06.014

    Article  Google Scholar 

  69. Qiu, J., Lin, Z., & Li, Y. (2015). Predicting customer purchase behavior in the E-commerce context. Electronic Commerce Research, 15(4), 427–452. https://doi.org/10.1007/s10660-015-9191-6

    Article  Google Scholar 

  70. Zhou, L. (2020). Product advertising recommendation in E-commerce based on deep learning and distributed expression. Electronic Commerce Research, 20, 321–342. https://doi.org/10.1007/s10660-020-09411-6

    Article  Google Scholar 

  71. Forsati, R., & Meybodi, M. R. (2010). Effective page recommendation algorithms based on distributed learning automata and weighted association rules. Expert Systems With Applications, 37(2), 1316–1330. https://doi.org/10.1016/j.eswa.2009.06.010

    Article  Google Scholar 

  72. Azami, S. Z., Torabi, N., & Tanabian, M. (2004). Modeling the customer behavior in the mobile payment on a non-connected vending machine platform. In 2004 Canadian conference on electrical and computer engineering (Vol. 2, pp. 815–818). https://doi.org/10.1109/CCECE.2004.1345239

  73. Kobsa, A. (2001). Generic user modeling systems. User Modeling and Use-adapted Interaction, 11(1–2), 49–63. https://doi.org/10.1023/A:1011187500863

    Article  Google Scholar 

  74. Kwan, I., Fong, J., & Wong, H. (2005). An E-customer behavior model with online analytical mining for internet marketing planning. Decision Support System, 41(1), 189–204. https://doi.org/10.1016/j.dss.2004.11.012

    Article  Google Scholar 

  75. Cao, P., Fan, M., & Liu, K. (2015). Optimal dynamic pricing problem considering patient and impatient customers’ purchasing behavior. International Journal of Production Research, 53(22), 6719–6735. https://doi.org/10.1080/00207543.2015.1056320

    Article  Google Scholar 

  76. Cao, J., Jiang, Z., & Wang, K. (2016). Customer demand prediction of service-oriented manufacturing incorporating customer satisfaction. International Journal of Production Research, 54(5), 1303–1321. https://doi.org/10.1080/00207543.2015.1067377

    Article  Google Scholar 

  77. Wu, X., Zhang, L., & Tian, S. (2019). Scenario-based E-commerce recommendation algorithm based on customer interest in Internet of Things environment. Electronic Commerce Research, 21, 689–705. https://doi.org/10.1007/s10660-019-09339-6

    Article  Google Scholar 

  78. Cui, W., Huang, Y., & Liu, M. (2015). Influential factors of vending machine interface to enhance the interaction performance. In: 2015 8th International conference on intelligent computation technology and automation (ICICTA) (pp. 486–489). https://doi.org/10.1109/ICICTA.2015.285

  79. Wang, M., & Yao, J. (2021). A reliable location design of unmanned vending machines based on customer satisfaction. Electronic Commerce Research. https://doi.org/10.1007/s10660-021-09479-8

    Article  Google Scholar 

  80. Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers.

    Book  Google Scholar 

  81. Leski, J. M. (2016). Fuzzy C-ordered-means clustering. Fuzzy Sets and Systems, 286, 114–133. https://doi.org/10.1016/j.fss.2014.12.007

    Article  Google Scholar 

  82. Qamar, U. (2014). A dissimilarity measure based fuzzy C-means (FCM) clustering algorithm. Journal of Intelligent and Fuzzy Systems, 26(1), 229–238. https://doi.org/10.3233/ifs-120730

    Article  Google Scholar 

  83. Groll, L., & Jakel, J. (2005). A new convergence proof of fuzzy C-means. IEEE Transactions on Fuzzy Systems, 13(5), 717–720. https://doi.org/10.1109/tfuzz.2005.856560

    Article  Google Scholar 

  84. Karayiannis, N. B. (2000). Generalized fuzzy C-means algorithms. Journal of Intelligent and Fuzzy Systems, 8(1), 63–81. https://doi.org/10.1109/fuzzy.1996.552321

    Article  Google Scholar 

  85. Havens, T. C., Bezdek, J. C., Leckie, C., Hall, L. O., & Palaniswam, M. (2012). Fuzzy C-means algorithms for very large data. IEEE Transactions on Fuzzy Systems, 20(6), 1130–1146. https://doi.org/10.1109/tfuzz.2012.2201485

    Article  Google Scholar 

  86. Chen, L., Chen, C. L. P., & Lu, M. (2011). A multiple-kernel fuzzy C-means algorithm for image segmentation. IEEE Transactions on Systems, Man, and Cybernetics, 41(5), 1263–1274. https://doi.org/10.1109/tsmcb.2011.2124455

    Article  Google Scholar 

  87. Zhu, L., Chung, F. L., & Wang, S. (2009). Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on Systems, Man, and Cybernetics, 39, 578–591. https://doi.org/10.1109/tsmcb.2008.2004818

    Article  Google Scholar 

  88. Askari, S. (2021). Fuzzy C-means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development. Expert Systems with Applications, 165, 113856. https://doi.org/10.1016/j.eswa.2020.113856

    Article  Google Scholar 

  89. Liu, Y., & Whitt, W. (2011). A network of time-varying many-server fluid queues with customer abandonment. Operations Research, 59(4), 835–846. https://doi.org/10.1287/opre.1110.0942

    Article  Google Scholar 

  90. Naso, D., Surico, M., Turchiano, B., & Kaymak, U. (2007). Genetic algorithms for supply-chain scheduling: A case study in the distribution of ready-mixed concrete. European Journal of Operational Research, 177(3), 2069–2099. https://doi.org/10.1016/j.ejor.2005.12.019

    Article  Google Scholar 

  91. Brown, E. C., & Sumichrast, R. T. (2005). Evaluating performance advantages of grouping genetic algorithms. Engineering Applications of Artificial Intelligence, 18(1), 1–12. https://doi.org/10.1016/j.engappai.2004.08.024

    Article  Google Scholar 

  92. Kumar, N., & Shanker, K. (2000). A genetic algorithm for FMS part type selection and machine loading. International Journal of Production Research, 38(16), 3861–3887. https://doi.org/10.1080/00207540050176058

    Article  Google Scholar 

  93. Syarif, A., Yun, Y., & Gen, M. (2002). Study on multi-stage logistic chain network: A spanning tree-based genetic algorithm approach. Computers & Industrial Engineering, 43(1), 299–314. https://doi.org/10.1016/s0360-8352(02)00076-1

    Article  Google Scholar 

  94. Cha, B. C., Moon, I. K., & Park, J. H. (2008). The joint replenishment and delivery scheduling of the one-warehouse, n-retailer system. Transportation Research Part E: Logistics and Transportation Review, 44(5), 720–730. https://doi.org/10.1016/j.tre.2007.05.010

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers and editors, whose valuable comments and corrections substantially improved this paper.

Funding

This work was supported by the National Natural Science Foundation of China [Grant Number 71872174].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yao, J. Replenishment and delivery optimization for unmanned vending machines service system based on fuzzy clustering. Electron Commer Res 23, 2419–2461 (2023). https://doi.org/10.1007/s10660-022-09544-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-022-09544-w

Keywords

Navigation