Skip to main content
Log in

On the Incompressible Behavior in Weakly Nonlinear Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This article considers the influence of incompressibility on the compliance and stiffness constants that appear in the weakly nonlinear theory of elasticity. The formulation first considers the incompressibility constraint applied to compliances, which gives explicit finite limits for the second-, third-, and fourth-order compliance constants. The stiffness/compliance relationships for each order are derived and used to determine the incompressible behavior of the second-, third-, and fourth-order stiffness constants. Unlike the compressible case, the fourth-order compliances are not found to be dependent on the fourth-order stiffnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saccomandi, G., Vergori, L.: Some remarks on the weakly nonlinear theory of isotropic elasticity. J. Elast. (2021). https://doi.org/10.1007/s10659-021-09865-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Kostek, S., Sinha, B.K., Norris, A.N.: Third-order elastic constants for an inviscid fluid. J. Acoust. Soc. Am. 94, 3014–3017 (1993). https://doi.org/10.1121/1.407336

    Article  Google Scholar 

  3. Hamilton, M.F., Iliinskii Zabolotskaya, Y.A.: Separation of compressibility and shear deformation in the elastic energy density (l). J. Acoust. Soc. Am. 116, 41–44 (2004). https://doi.org/10.1121/1.1736652

    Article  Google Scholar 

  4. Ogden, R.W.: On isotropic tensors and elastic moduli. Proc. Camb. Philol. Soc. 75, 427–436 (1974). https://doi.org/10.1017/S0305004100048635

    Article  MathSciNet  MATH  Google Scholar 

  5. Gennisson, J.L., Rénier, M., Catheline, S., Barrière, C., Bercoff, J., Tanter, M., Fink, M.: Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J. Acoust. Soc. Am. 122, 3211–3219 (2007). https://doi.org/10.1121/1.2793605

    Article  Google Scholar 

  6. Gennisson, J.L., Deffieux, T., Fink, M., Tanter, M.: Ultrasound elastography: principles and techniques. Diagn. Interv. Imaging 94, 487–495 (2013). https://doi.org/10.1016/j.diii.2013.01.022

    Article  Google Scholar 

  7. Destrade, M., Ogden, R.W.: On the third- and fourth-order constants of incompressible isotropic elasticity. J. Acoust. Soc. Am. 128, 3334–3343 (2010). https://doi.org/10.1121/1.3505102

    Article  Google Scholar 

  8. Destrade, M., Martin, P., Ting, T.: The incompressible limit in linear anisotropic elasticity, with applications to surface waves and elastostatics. J. Mech. Phys. Solids 50, 1453–1468 (2002). https://doi.org/10.1016/S0022-5096(01)00121-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Ignaczak, J., Rao, C.R.A.: A tensorial classification of elastic waves. J. Acoust. Soc. Am. 93, 17–21 (1993). https://doi.org/10.1121/1.405642

    Article  MathSciNet  Google Scholar 

  10. Ostoja-Starzewski, M.: Ignaczak equation of elastodynamics. Math. Mech. Solids 24, 3674–3713 (2018). https://doi.org/10.1177/1081286518757284

    Article  MathSciNet  MATH  Google Scholar 

  11. Kube, C.M., Norris, A.N.: Stress formulation of elastic wave motion. JASA Express Lett. 1, 064,001 (2021). https://doi.org/10.1121/10.0004317

    Article  Google Scholar 

  12. Norris, A.N.: Finite-amplitude waves in solids. In: Hamilton, M.F., Blackstock, D. (eds.) Nonlinear Acoustics, pp. 263–278. Academic Press, San Diego (1998)

    Google Scholar 

  13. Kube, C.M., Roy, A., Jensen, D.S., Branch, D.W.: A unifying model of weakly nonlinear elastic waves; large on large theory. J. Acoust. Soc. Am. 151, 1294–1310 (2022). https://doi.org/10.1121/10.0009376

    Article  Google Scholar 

  14. Brugger, K.: Pure modes for elastic waves in crystals. J. Appl. Phys. 36, 759–768 (1965). https://doi.org/10.1063/1.1714215

    Article  MathSciNet  Google Scholar 

  15. Landau, L.D., Lifshitz, E.M.: Theory of elasticity. In: Course of Theoretical Physics, 3rd edn. vol. 7, pp. 1–186. Butterworth-Heinemann, Oxford (1986)

    Google Scholar 

  16. Kube, C.M.: Scattering of harmonic waves from a nonlinear elastic inclusion. J. Acoust. Soc. Am. 141, 4756 (2017). https://doi.org/10.1121/1.4986747

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Andy Norris of Rutgers University for helpful suggestions and discussion at the early stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Kube.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Isotropic Tensors of Elastic Stiffness and Compliance

For isotropic materials, the elastic modulus tensors are linear combinations of products of Kronecker delta functions,

c ijkl = c 12 δ i j δ k l + 2 c 44 I ijkl , c ijklmn = c 123 δ i j δ k l δ m n + 2 c 144 ( δ i j I klmn + δ k l I ijmn + δ m n I ijkl ) c i j k l m n + 2 c 456 ( δ i n I jmkl + δ j n I imkl + δ i m I jnkl + δ j m I inkl ) ,  and c ijklmnpq = ( c 1123 2 c 1255 + 4 c 1456 ) δ i j δ k l δ m n δ p q C i j k l m n p q + 2 ( c 1255 2 c 1456 ) ( δ i j δ i j δ k l I mnpq + δ i j δ m n I klpq + δ i j δ p q I klmn C i j k l m n p q + δ k l δ m n I ijpq + δ k l δ p q I ijmn + δ m n δ p q I ijkl δ i j ) C i j k l m n p q + 2 c 1456 [ δ i j δ i j ( δ i j δ k q I lpmn + δ k p I lqmn + δ l q I kpmn + δ l p I kqmn δ i j ) C i j k l m n p q + δ k l ( δ i q δ i q I jpmn + δ i p I jqmn + δ j q I ipmn + δ j p I iqmn δ i j ) C i j k l m n p q + δ m n ( δ i j δ i q I jpkl + δ i p I jqkl + δ j q I ipkl + δ j p I iqkl δ i j ) C i j k l m n p q + δ p q ( δ i j δ i n I jmkl + δ i m I jnkl + δ j n I imkl + δ j m I inkl δ i j ) δ i j ] C i j k l m n p q + 4 c 4455 ( I ijkl I mnpq + I ijmn I klpq + I ijpq I klmn )
(36)

where \({I_{\mathit{ijkl}}} = \left ( {{\delta _{ik}}{\delta _{jl}} + {\delta _{il}}{ \delta _{jk}}} \right )/2\) is the fourth-rank identity tensor. The form of \(c_{\mathit{ijkl}}\) is well-known whereas the forms for \(c_{\mathit{ijklmn}}\) and \(c_{\mathit{ijklmnpq}}\) are less common. Using Eqs. (36), it is easy to show that [16] \(c_{11}=c_{12}+2c_{44}\), \(c_{111}=c_{123}+6c_{144}+8c_{456}\), \(c_{112}=c_{123}+2c_{144}\), \(c_{155}=c_{144}+2c_{456}\), \(c_{1111}=c_{1123}+10c_{1255}+12c_{1456}+12c_{4455}\), \(c_{1112}=c_{1123}+4c_{1255}\), \(c_{1155}=c_{1255}+2c_{1456}+2c_{4455}\). Note that the analogous isotropic tensors for compliance constants take the same form as Eqs. (36), thus, only a notation change from \(c\rightarrow s\) is needed.

Conversions to Landau-Lifshitz notation follow [12, 15, 16] \(c_{11}=\lambda +2\mu \), \(c_{12}=\lambda \), \(c_{44}=\mu \), \(c_{111}=2\mathcal{A}+6\mathcal{B}+2\mathcal{C}\), \(c_{112}=2\mathcal{B}+2\mathcal{C}\), \(c_{123}=2\mathcal{C}\), \(c_{144}=\mathcal{B}\), \(c_{155}=\mathcal{A}/2+\mathcal{B}\), \(c_{456}=\mathcal{A}/4\), \(c_{1111}=24(\mathcal{E}+\mathcal{F}+\mathcal{G}+\mathcal{H})\), \(c_{1112}=6\mathcal{E}+12\mathcal{F}+24\mathcal{H}\), \(c_{1122}=8\mathcal{F}+8\mathcal{G}+24\mathcal{H}\), \(c_{1123}=4\mathcal{F}+24\mathcal{H}\), \(c_{1255}=3\mathcal{E}/2+2\mathcal{F}\), \(c_{1456}=3\mathcal{E}/4\), \(c_{1144}=2\mathcal{F}+4\mathcal{G}\), \(c_{1155}=3\mathcal{E}+2\mathcal{F}+4\mathcal{G}\), \(c_{1244}=3\mathcal{E}/2+2\mathcal{F}\), \(c_{1266}=3\mathcal{E}+2\mathcal{F}\), \(c_{4455}=2\mathcal{G}\), \(c_{4444}=6\mathcal{G}\). Thus, in terms of the [15] convention,

(37)

Appendix B: Stiffness/Compliance Relationships

The derivative of \(\boldsymbol{S}\) defined in Eq. (1) with respect to itself is

$$\begin{aligned} \frac{\partial S_{ij}}{\partial S_{kl}}&=I_{\mathit{ijkl}}=c_{\mathit{ijmn}} \frac{\partial E_{mn}}{\partial S_{kl}}+c_{\mathit{ijmnpq}} \frac{\partial E_{mn}}{\partial S_{kl}} E_{pq}+\frac{1}{2}c_{\mathit{ijmnpqrs}} \frac{\partial E_{mn}}{\partial S_{kl}}E_{pq}E_{rs}, \end{aligned}$$
(38)

where \(I_{\mathit{ijkl}}=\left (\delta _{ik}\delta _{jl}+\delta _{il}\delta _{jk} \right )/2\) is the fourth-rank identity. The term \(\partial E_{mn}/\partial S_{kl}\) is found by taking the derivative of \(\boldsymbol{E}\) in Eq. (8) with respect to \(\boldsymbol{S}\),

$$\begin{aligned} \frac{\partial E_{mn}}{\partial S_{kl}}&=s_{\mathit{mnkl}}+s_{\mathit{mnklpq}}S_{pq}+ \frac{1}{2}s_{\mathit{mnklpqrs}}S_{pq}S_{rs}, \end{aligned}$$
(39)

which was obtained by using \(\partial S_{ij}/\partial S_{kl}=I_{\mathit{ijkl}}\). Substituting Eqs. (8) and (39) into Eq. (38) and keeping terms up to second-order in \(\boldsymbol{S}\) gives

$$\begin{aligned} I_{\mathit{ijkl}}&=c_{\mathit{ijmn}}s_{\mathit{mnkl}}+c_{\mathit{ijmn}}s_{\mathit{mnklpq}}S_{pq}+c_{\mathit{ijmnrs}}s_{\mathit{mnkl}}s_{\mathit{rspq}}S_{pq} \\ &\quad +\frac{1}{2}c_{\mathit{ijmn}}s_{\mathit{mnklpqrs}}S_{pq}S_{rs}+\frac{1}{2}c_{\mathit{ijmntu}}s_{\mathit{mnkl}}s_{\mathit{tupqrs}}S_{pq}S_{rs} \\ &\quad +c_{\mathit{ijmntu}}s_{\mathit{mnklpq}}s_{\mathit{turs}}S_{pq}S_{rs}+\frac{1}{2}c_{\mathit{ijmntuxy}}s_{\mathit{mnkl}}s_{\mathit{tupq}}s_{\mathit{xyrs}}S_{pq}S_{rs}. \end{aligned}$$
(40)

The relationships between the elastic stiffness and compliance tensors are found by equating constant, linear, and quadratic terms of \(\boldsymbol{S}\),

$$\begin{aligned} s_{\mathit{ijmn}}c_{\mathit{mnkl}}&=I_{\mathit{ijkl}},~s_{\mathit{ijklmn}}=-s_{\mathit{ijpq}}c_{\mathit{pqrstu}}s_{\mathit{rskl}}s_{\mathit{tumn}}, \text{ and} \\ s_{\mathit{ijklmnpq}}&=-s_{\mathit{ijrs}}c_{\mathit{rstuwxyz}}s_{\mathit{tukl}}s_{\mathit{wxmn}}s_{\mathit{yzpq}}-s_{\mathit{ijrs}}c_{\mathit{rstuwx}}s_{\mathit{tukl}}s_{\mathit{wxmnpq}} \\ & \hphantom{s_{ijklmnpq}=} -2s_{\mathit{ijrs}}c_{\mathit{rstuwx}}s_{\mathit{tuklmn}}s_{\mathit{wxpq}}. \end{aligned}$$
(41)

The stiffness/compliance relations for isotropic materials follow from Eqs. (41),

$$\begin{aligned} &s_{12}=-\frac{c_{12}}{2c_{44}\left (3c_{12}+2c_{44}\right )},~s_{44}= \frac{1}{4c_{44}}, \\ &s_{123}=-a_{1}^{3}\left (c_{123}+2c_{144}+\frac{8}{9}c_{456}\right )+ \frac{8}{3}a_{1}s_{44}^{2}\left (3c_{144}+4c_{456}\right )- \frac{128}{9}s_{44}^{3}c_{456}, \\ &s_{144}=-\frac{4}{3}a_{1}s_{44}^{2}\left (3c_{144}+4c_{456}\right )+ \frac{32}{3}s_{44}^{3}c_{456},~s_{456}=-8c_{456}s_{44}^{3}, \\ &s_{1123}=-a_{1}^{4}\left (c_{1123}+2c_{1255}+\frac{4}{3}c_{4455}- \frac{4}{9}c_{1456}\right ) \\ & \hphantom{s_{1123}=} \quad +\frac{1}{3}a_{1}^{2}\left [8s_{44}^{2}\left (3c_{1255}+2c_{4455}+2c_{1456} \right )-\left (3s_{123}+4s_{144}\right )\left (9c_{123}+18c_{144}+8c_{456} \right )\right ] \\ & \hphantom{s_{1123}=} \quad +\frac{16}{3}s_{44}a_{1}\left [s_{144}\left (3c_{144}+4c_{456} \right )-\frac{8}{3}s_{44}^{2}c_{1456}\right ], \\ &s_{1255}=-\frac{4}{3}a_{1}^{2}\left [s_{44}^{2}\left (3c_{1255}+2c_{1456}+2c_{4455} \right )-\frac{1}{12}\left (3s_{144}+4s_{456}\right )\left (9c_{123}+18c_{144}+8c_{456} \right )\right ] \\ & \hphantom{s_{1123}=} \quad +\frac{16}{3}a_{1}s_{44}\left [s_{44}^{2}c_{1456}-\frac{1}{6} \left (3s_{144}-s_{456}\right )\left (3c_{144}+4c_{456}\right ) \right ] \\ & \hphantom{s_{1123}=} \quad +\frac{32}{3}s_{44}^{4}c_{4455}+\frac{8}{9}s_{44}^{2}\left (9c_{144}s_{144}+12c_{144}s_{456}+8c_{456}s_{456} \right ), \\ &s_{1456}=-4a_{1}s_{44}\left [2s_{44}^{2}c_{1456}+s_{456}\left (3c_{144}+4c_{456} \right )\right ],\text{ and} \\ &s_{4455}=-16s_{44}^{4}c_{4455}-4s_{44}^{2}\left (3c_{144}s_{144}+4c_{144}s_{456}+4c_{456}s_{144}+8c_{456}s_{456} \right ), \end{aligned}$$
(42)

where \(a_{1}=3s_{12}+2s_{44}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kube, C.M. On the Incompressible Behavior in Weakly Nonlinear Elasticity. J Elast 148, 129–140 (2022). https://doi.org/10.1007/s10659-022-09886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09886-4

Keywords

Mathematics Subject Classification (2010)

Navigation