Skip to main content
Log in

Axonal Buckling Following Stretch Injury

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Diffuse brain injury is caused by rapid rotation of the head, and causes strain injury to tissue throughout the brain. Following strain injury, axons exhibit delayed recovery, showing regional buckling behavior immediately after stretch and returning to their original appearance over an extended period of time. This axonal buckling is hypothesized to occur as a result of localized stretching within the axon: Rapid strain causes mechanical damage to microtubules, increasing the effective length of axons. This damage is repaired gradually returning the axon to its initial length.

Here, we test the hypothesis that localized stretching is a possible explanation for the regional buckling behavior. An elongated region of axon is modeled as an Euler beam on an elastic foundation, where the foundation represents the surrounding brain tissue, which consists of glial cells and extracellular matrix. After stretch the elastic foundation returns immediately to its pre-stretch length, while the axon is initially elongated and returns to its original length over a longer period of time. The model exhibits solutions similar to those observed experimentally in post-stretch axons, with undulations that have a similar wavelength and amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmadzadeh, H., Smith, D.H., Shenoy, V.B.: Mechanical effects of dynamic binding between tau proteins on microtubules during axonal injury. Biophys. J. 109(11), 2328–2337 (2015)

    Article  ADS  Google Scholar 

  2. Alberts, B.: Molecular Biology of the Cell: Reference Edition. Molecular Biology of the Cell, vol. 1. Garland, New York (2008)

    Google Scholar 

  3. Andriessen, T.M.J.C., Jacobs, B., Vos, P.E.: Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J. Cell. Mol. Med. 14(10), 2381–2392 (2010)

    Article  Google Scholar 

  4. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008)

    Article  Google Scholar 

  5. Baas, P.W., Karabay, A.: Axonal Transport and the Neuronal Cytoskeleton. Wiley, New York (2001)

    Book  Google Scholar 

  6. Bain, A.C., Meaney, D.F.: Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122(6), 615–622 (2000)

    Article  Google Scholar 

  7. Bernal, R., Pullarkat, P.A., Melo, F.: Mechanical properties of axons. Phys. Rev. Lett. 99(1), 018301 (2007)

    Article  ADS  Google Scholar 

  8. Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E., Weitz, D.A.: Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173(5), 733–741 (2006)

    Article  Google Scholar 

  9. Bray, D.: Axonal growth in response to experimentally applied mechanical tension. Dev. Biol. 102(2), 379–389 (1984)

    Article  Google Scholar 

  10. Bressloff, P.C., Newby, J.M.: Stochastic models of intracellular transport. Rev. Mod. Phys. 85(1), 135 (2013)

    Article  ADS  Google Scholar 

  11. Büki, A., Povlishock, J.T.: All roads lead to disconnection? Traumatic axonal injury revisited. Acta Neurochir. 148, 181–194 (2006)

    Article  Google Scholar 

  12. Chetta, J., Kye, C., Shah, S.B.: Cytoskeletal dynamics in response to tensile loading of mammalian axons. Cytoskeleton 67(10), 650–665 (2010)

    Article  Google Scholar 

  13. Cole, K.S., Curtis, H.J.: Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22(5), 649–670 (1939)

    Article  Google Scholar 

  14. de Rooij, R., Kuhl, E.: Constitutive modeling of brain tissue: current perspectives. Appl. Mech. Rev. 68(1), 010801 (2016)

    Article  Google Scholar 

  15. Dennerll, T.J., Joshi, H.C., Steel, V.L., Buxbaum, R.E., Heidemann, S.R.: Tension and compression in the cytoskeleton of pc-12 neurites. ii: Quantitative measurements. J. Cell Biol. 107(2), 665–674 (1988)

    Article  Google Scholar 

  16. Farkas, O., Povlishock, J.T.: Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. In: Weber, J.T., Maas, A.I.R. (eds.) Neurotrauma: New Insights Into Pathology and Treatment. Progress in Brain Research, vol. 161, pp. 43–59. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  17. Franze, K., Guck, J.: The biophysics of neuronal growth. Rep. Prog. Phys. 73(9), 094601 (2010)

    Article  ADS  Google Scholar 

  18. Ganguly, A., Tang, Y., Wang, L., Ladt, K., Loi, J., Dargent, B., Leterrier, C., Roy, S.: A dynamic formin-dependent deep f-actin network in axons. J. Cell Biol. 210(3), 401–417 (2015)

    Article  Google Scholar 

  19. Gittes, F., Mickey, B., Nettleton, J., Howard, J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–934 (1993)

    Article  Google Scholar 

  20. Goriely, A., Budday, S., Kuhl, E.: Neuromechanics: from Neurons to Brain. Adv. Appl. Mech. 48, 79–139 (2015)

    Article  Google Scholar 

  21. Goriely, A., Geers, M.G.D., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A.W., Waters, S.L., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14, 931 (2015)

    Article  Google Scholar 

  22. Hirokawa, N.: Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94(1), 129–142 (1982)

    Article  Google Scholar 

  23. Holland, M.A., Miller, K.E., Kuhl, E.: Emerging brain morphologies from axonal elongation. Ann. Biomed. Eng. 43(7), 1640–1653 (2015)

    Article  Google Scholar 

  24. Lang, G.E., Vella, D., Waters, S.L., Goriely, A.: Propagation of damage in brain tissue: coupling the mechanics of edema and oxygen delivery. Biomech. Model. Mechanobiol. 14, 1197–1216 (2015)

    Article  Google Scholar 

  25. Lazarus, C., Soheilypour, M., Mofrad, M.R.: Torsional behavior of axonal microtubule bundles. Biophys. J. 109(2), 231–239 (2015)

    Article  ADS  Google Scholar 

  26. Lessinnes, Th., Moulton, D.E., Goriely, A.: Morphoelastic rods. Part II: Growing birods. J. Mech. Phys. Solids (2015). doi:10.1016/j.jmps.2015.07.008

    Google Scholar 

  27. Matthews, M.A.: An electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system. Anat. Rec. 161(3), 337–351 (1968)

    Article  Google Scholar 

  28. Maxwell, W.L., Povlishock, J.T., Graham, D.L.: A mechanistic analysis of nondisruptive axonal injury: a review. J. Neurotrauma 14, 419–440 (2007)

    Article  Google Scholar 

  29. Moulton, D.E., Lessinnes, T., Goriely, A.: Morphoelastic rods. Part I: A single growing elastic rod. J. Mech. Phys. Solids 61(2), 398–427 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  30. Neukirch, S., Frelat, J., Goriely, A., Maurini, C.: Vibrations of post-buckled rods: the singular inextensible limit. J. Sound Vib. 331(3), 704–720 (2012)

    Article  ADS  Google Scholar 

  31. Nolte, J.: The Human Brain: An Introduction to Its Functional Anatomy, 4th edn. Mosby, St. Louis (1998)

    Google Scholar 

  32. O’Keeffe, S.G., Moulton, D.E., Waters, S.L., Goriely, A.: Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix. Int. J. Non-Linear Mech. 56, 94–104 (2013)

    Article  Google Scholar 

  33. O’Toole, M., Lamoureux, P., Miller, K.E.: A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94(7), 2610–2620 (2008)

    Article  Google Scholar 

  34. O’Toole, M., Lamoureux, P., Miller, K.E.: Measurement of subcellular force generation in neurons. Biophys. J. 108(5), 1027–1037 (2015)

    Article  Google Scholar 

  35. Ouyang, H., Nauman, E., Shi, R.: Contribution of cytoskeletal elements to the mechanical property of axons. In: Micro/Nano Symposium (UGIM), 2010 18th Biennial University/Government/Industry, pp. 1–5 (2010)

    Google Scholar 

  36. Recho, P., Jerusalem, A., Goriely, A.: Growth, collapse, and stalling in a mechanical model for neurite motility. Phys. Rev. E 93(3), 032410 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Rolls, M.M.: Neuronal polarity in drosophila: sorting out axons and dendrites. Dev. Neurobiol. 71(6), 419–429 (2011)

    Article  Google Scholar 

  38. Sanchez, R.M., Dunkelberger, G.R., Quigley, H.A.: The number and diameter distribution of axons in the monkey optic nerve. Investig. Ophthalmol. Vis. Sci. 27(9), 1342–1350 (1986)

    Google Scholar 

  39. Schaedel, L., John, K., Gaillard, J., Nachury, M.V., Blanchoin, L., Théry, M.: Microtubules self-repair in response to mechanical stress. Nat. Mater. 14(11), 1156–1163 (2015)

    Article  ADS  Google Scholar 

  40. Smith, D.H., Meaney, D.F.: Axonal damage in traumatic brain injury. Neuroscientist 6(6), 483–495 (2000)

    Article  Google Scholar 

  41. Smith, D.H., Wolf, J.A., Lusardi, T.A., Lee, V.M.-Y., Meaney, D.F.: High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J. Neurosci. 19(11), 4263–4269 (1999)

    Google Scholar 

  42. Smith, D.H., Wolf, J.A., Meaney, D.F.: A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7(2), 131–139 (2001)

    Article  Google Scholar 

  43. Soheilypour, M., Peyro, M., Peter, S.J., Mofrad, M.R.: Buckling behavior of individual and bundled microtubules. Biophys. J. 108(7), 1718–1726 (2015)

    Article  ADS  Google Scholar 

  44. Tang-Schomer, M.D., Patel, A.R., Baas, P.W., Smith, D.H.: Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 24(5), 1401–1410 (2010)

    Article  Google Scholar 

  45. Unterberg, A.W., Stover, J., Kress, B., Kiening, K.L.: Edema and brain trauma. Neuroscience 129(4), 1019–1027 (2004). Brain Water Homeostasis

    Article  Google Scholar 

  46. van den Bedem, H., Kuhl, E.: Tau-ism: the yin and yang of microtubule sliding, detachment, and rupture. Biophys. J. 109(11), 2215–2217 (2015)

    Article  Google Scholar 

  47. Vargas, M.E., Barres, B.A.: Why is Wallerian degeneration in the CNS so slow? Annu. Rev. Neurosci. 30(1), 153–179 (2007)

    Article  Google Scholar 

  48. Wolf, J.A., Stys, P.K., Lusardi, T., Meaney, D., Smith, D.H.: Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. 21(6), 1923–1930 (2001)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Horizon 2020 Programme/ERC Grant Agreement no. 637334 (DV). The authors are grateful to Professors Doug Smith and Kristian Franze for sharing the images reproduced in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Goriely.

Appendices

Appendix A: Solutions to the Model for \(\lambda^{2} \leq4\beta\)

This appendix shows that there are no non-trivial solutions to the system of (9)–(13) unless \(\lambda^{2}>4\beta\).

1.1 A.1 \(\lambda^{2}=4\beta\)

Initially, we consider the case \(\lambda^{2}=4\beta\). Note that since \(\beta\) is positive constant, this implies that \(\lambda\) is non-zero and so the general solution to (9) is

$$ w=A\cos(k x) + Bx\cos(k x) + C\sin(k x) + Dx\sin(k x), $$
(26)

where \(k=\lambda/2\). By assumption, the beam is clamped at the boundaries, so that the appropriate boundary conditions are those of (13). Applying the boundary condition \(w(\pm 1)=0\) and adding and subtracting the equations obtained gives:

$$\begin{aligned} & A\cos(k)+D\sin(k)=0, \end{aligned}$$
(27)
$$\begin{aligned} & B\cos(k)+C\sin(k)=0, \end{aligned}$$
(28)

while proceeding similarly with the boundary condition \(w'(\pm1)=0\) we find another pair of equations:

$$\begin{aligned} & (D-Ak)\sin(k)+Dk\cos k =0, \end{aligned}$$
(29)
$$\begin{aligned} & (Ck+B)\cos(k)-Bk\sin k =0. \end{aligned}$$
(30)

Solving (27) and (29) gives that either \(A=D=0\) or the dispersion relation \(\sin k\cos k - k=0\) is satisfied. Graphically it can be shown that the only solution to this dispersion relation is \(k=0\), which is inconsistent with \(k=\lambda/2=\sqrt{\beta}>0\). We therefore conclude that \(A=D=0\). Similarly, solving (28) and (30) gives that either \(B=C=0\) or \(\sin k\cos k + k=0\); the only solution to this equation is again \(k=0\) and so \(B=C=0\). As a result, no non-trivial solution exists that satisfies the clamped boundary conditions with \(\lambda^{2}=4\beta\).

1.2 A.2 \(\lambda^{2}<4\beta\)

In the case \(\lambda^{2}<4\beta\) the general solution to (9) is given by:

$$\begin{aligned} w =&A\cos(r x)\sinh(\rho x) + B\cos(r x) \cosh(\rho x) \\ &{}+ C\sin(r x) \sinh(\rho x) + D\sin(r x) \sinh(\rho x), \end{aligned}$$
(31)

where \(k=\pm r \pm i \rho\) are the four solutions of the auxiliary equation \(k^{4}-\lambda k^{2} + \beta=0\). Applying the boundary conditions at \(w(\pm1)\) and adding and subtracting the results gives:

$$\begin{aligned} & A\cos r \sinh\rho+D\sin r \cosh\rho=0, \end{aligned}$$
(32)
$$\begin{aligned} & B\cos r \cosh\rho+C\sin r\sinh\rho=0. \end{aligned}$$
(33)

Similarly imposing \(w'(\pm1)=0\) and manipulating we find another pair of equations:

$$\begin{aligned} & 0= A(-r \sin r \sinh\rho+ \rho\cos r \cosh\rho)+ D(r \cos r \cosh \rho+ \rho\sin r \sinh\rho), \end{aligned}$$
(34)
$$\begin{aligned} & 0=B(-r \sin r \cosh\rho+ \rho\cos r \sinh\rho) + C (r \cos r \sin \rho+ \rho\sin r \cosh\rho). \end{aligned}$$
(35)

Solving (32) and (34) we obtain that either \(A=D\) or the dispersion relationship \(\cos r \sin r/r=\sinh\rho\cosh\rho/ \rho\) holds. Graphically it can be shown that the only solution to the dispersion relation is \(\rho=r=0\), contradicting our assumption that the root of the auxiliary equation is complex. Similarly solving (33) and (35) gives that either \(B=C\) or \(r\) and \(\rho\) satisfy \(\cos r \sin r/r=-\sinh\rho\cosh\rho/ \rho \), which also has no non-trivial solutions. We therefore conclude that no non-trivial solutions exist that satisfy the clamped boundary conditions when \(\lambda^{2}<4\beta\).

Appendix B: Second Moment of Area for a Circular Arrangement of Microtubules

An upper bound, for the bending stiffness of an axon can be estimated by considering the constituent parts within the axon. Microtubules are the stiffest component of the cytoskeleton [35], and so we consider a structure consisting only of microtubules, whose Young’s modulus and radius have been extensively characterized [2, 19]. It is assumed that microtubules are arranged in a circular pattern located close to the perimeter of the axon, as shown in Fig. 7(a). This assumption of arranging the microtubules around the outermost boundary of the axon and neglecting sliding between axons gives an upper bound for stiffness. If \(E_{m}\) is the Young’s modulus of microtubules and \(I_{m}\) is the second moment of area for the arrangement of microtubules, then \(B=E_{m} I_{m}\). For an arrangement of \(N\) microtubules, each with radius \(r_{m}\), and arranged at a radius \(R\) from the centre of an axon, the second moment of area can be shown to be \(\pi r_{m}^{2} R^{2} N/2\).

Fig. 7
figure 7

(a) Cross section of an axon, showing the microtubules (arrow). \(\mbox{Axon radius}=0.5~\upmu \mbox{m}\). Image taken from [44] with kind permission from Doug Smith. (b) Diagram illustrating the arrangement of \(N=12\) microtubules which are used to calculate the second moment of area of an axon

The second moment of area for an arrangement of \(N\) microtubules each with radius \(r_{m}\) and positioned in a circular arrangement at a distance \(R\) from the centre of an axon, as illustrated in Fig. 7(b) is given by \(\pi r_{m}^{2} R^{2} N/2\). First consider the moment of area \(I\) of a single microtubule, with centre located at distance \(a_{j}\) from the vertical axis. The second moment of area is given by,

$$\begin{aligned} I(a_{j}) =& \int_{D} z^{2} ~\mathrm {d}z ~\mathrm {d}y = \int_{-r_{m}}^{r_{m}} \int_{a-\sqrt {r_{m}^{2}-y^{2}}}^{a+\sqrt{r_{m}^{2}-y^{2}}} z^{2} ~\mathrm {d}z ~\mathrm {d}y, \\ =& \frac{1}{3} \int_{-r_{m}}^{r_{m}} \Bigl(a+\sqrt{r_{m}^{2}-y^{2}} \Bigr)^{3} -\Bigl(a-\sqrt {r_{m}^{2}-y^{2}} \Bigr)^{3} ~\mathrm {d}y, \\ =&\frac{1}{3} \int_{-r_{m}}^{r_{m}} 8\sqrt {r_{m}^{2}-y^{2}}^{3}+6 \bigl(a^{2}-\bigl(r_{m}^{2}-y^{2}\bigr) \bigr) \Bigl(\sqrt{r_{m}^{2}-y^{2}}\Bigr) ~\mathrm {d}y. \end{aligned}$$

Parameterizing \(y\) by \(r_{m} \sin\theta\) for \(\theta\in[-\pi/2, \pi /2]\). Then the integral simplifies to,

$$\begin{aligned} I(a_{j}) =\frac{1}{3}& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8r_{m}^{4} \cos^{4} \theta+ 6 \bigl(a^{2}-r_{m}^{2} \cos^{2} \theta\bigr) ~\mathrm {d}\theta, \\ =&\frac{2}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 r_{m}^{4} \biggl( \frac {3}{8}+ \frac{1}{2} \cos2\theta+ \frac{1}{8} \cos4\theta \biggr) + 3a_{j}^{2}r_{m}^{2}(1+ \cos\theta) ~\mathrm {d}\theta, \\ =&\pi r_{m}^{2} \biggl(\frac{r_{m}^{2}}{4} + a_{j}^{2} \biggr). \end{aligned}$$

Now considering a circular arrangement of \(N\) microtubules, evenly spaced at radius \(R\) from the centre of the axon. The distance from the vertical axis of each microtubules is given by \(a_{j}=R \sin\theta_{j}\) where \(\theta_{j}=\alpha+\frac{2\pi(j-1)}{N}\). The second moment of area of the collection is given by:

$$\begin{aligned} I =&\sum_{j=i}^{N} I(a_{j}) = \sum_{j=i}^{N} \pi r_{m}^{2} \biggl(\frac{r_{m}^{2} }{4}+(R \sin\theta_{j})^{2} \biggr), \\ =&\frac{N\pi r_{m}^{4}}{4} + \pi r_{m}^{2} R^{2} \sum _{j=i}^{N} \sin^{2} \biggl( \alpha+ (j-1) \frac{2 \pi}{N} \biggr). \end{aligned}$$

Finally it remains to evaluate the sum, it can be shown that for all \(N>2\) and all \(\alpha\) the sum in the equation above is \(N/2\)

$$\begin{aligned} \sum_{j=i}^{N} \sin^{2} \biggl( \alpha+ (j-1) \frac{2 \pi}{N} \biggr) =& \sum_{j=0}^{N-1} \biggl( \frac{1}{2i} \biggr)^{2} \bigl( e^{(\alpha+\frac {2\pi j}{N})i} - e^{-(\alpha+\frac{2\pi j}{N})i} \bigr) \\ =& \frac{N}{2} -\frac{1}{4} \Biggl( e^{2\alpha i}\sum _{j=0}^{N-1} e^{\frac{4 \pi i}{N}j} + e^{-2\alpha i}\sum _{j=0}^{N-1} e^{-\frac{4 \pi i}{N}j} \Biggr) \\ =& \frac{N}{2} -\frac{1}{4} \biggl( e^{2\alpha i} \biggl( \frac{1-e^{4 \pi i}}{1-e^{4\pi i/N}} \biggr) + e^{-2\alpha i} \biggl( \frac{1-e^{-4 \pi i}}{1-e^{-4\pi i/N}} \biggr) \biggr). \end{aligned}$$

The numerators \(1-e^{\pm4 \pi i}\) are always equal to zero, and the denominator \(1-e^{\pm4\pi i/N}\) is non zero unless \(N=1\) or 2. Thus for \(N>2\),

$$\begin{aligned} I =&\frac{N\pi r_{m}^{4}}{4} + \pi r_{m}^{2} R^{2} \frac{N}{2}=\frac{\pi r_{m}^{2} N}{2} \biggl(\frac{ r_{m}^{2} }{2} + R^{2} \biggr) \approx \frac{\pi r_{m}^{2}R^{2}N}{2}, \end{aligned}$$

where an approximation is made since the radius of a microtubule \(r_{m}\ll R\) — the radius at which the microtubules are arranged within the axon \(R\).

The typical diameter of a microtubule \(r_{m}\approx25~\mbox{nm}\) [2] and, as previously, we take the radius of an axon \(r_{0}\approx0.5~\upmu \mbox{m}\). It is assumed that the microtubules are arranged close to the edge of the axon so that \(R=0.4~\upmu \mbox{m}\), and we assume that there are \(N=12\) microtubules in a cross section. This number varies between axons but, as the bending stiffness varies only linearly with \(N\), variations in \(N\) will not have a great effect. Taking \(E_{m}\approx1.2~\mbox{GPa}\) [19] we have,

$$ B=E_{m}I_{m}=E_{m} \times\frac{\pi r_{m}^{2} R^{2} N}{2} \approx6 \times 10^{-19}~\mbox{Nm}^{2}. $$
(36)

The cytoskeleton also consists of neurofilaments and microfilaments. Their overall contribution to the bending stiffness of axons are not fully understood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, G.E., Waters, S.L., Vella, D. et al. Axonal Buckling Following Stretch Injury. J Elast 129, 239–256 (2017). https://doi.org/10.1007/s10659-016-9604-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9604-3

Keywords

Mathematics Subject Classification

Navigation