Skip to main content

Advertisement

Log in

Trapped Modes in Piezoelectric and Elastic Waveguides

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We derive a sufficient condition for the existence of trapped modes in a cylindrical piezoelectric waveguide \(\varOmega\) with a compact void \(\varTheta\). An infinite part \(\varGamma_{D}\) of the exterior boundary \(\partial\varOmega\) is clamped along an electric conductor and the remaining part \(\varGamma_{N}=(\partial\varOmega\setminus \varGamma_{D})\cup\partial\varTheta\) is traction-free and is in contact with an insulator, e.g., a vacuum. The condition permits the limit passage either to an elastic or a compound waveguide but it crucially differs from the pure elastic case due to the involved electric enthalpy instead of the energy functional. Examples of concrete waveguides and voids supporting trapped modes are given, and open questions are formulated. In particular, in contrast to a pure elastic waveguide where “almost” any crack traps a wave, no example of a crack trapping a wave in a piezoelectric waveguide is known yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. No particular example of a cracked elastic waveguide is known where the above condition on traction is denied.

References

  1. Aslanyan, A., Parnovski, L., Vassiliev, D.: Complex resonances in acoustic waveguides. Q. J. Mech. Appl. Math. 53(3), 429–447 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birman, M.S., Solomyak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. Reidel, Dordrecht (1986)

    Book  MATH  Google Scholar 

  3. Bonnet-Bendhia, A.-S., Duterte, J., Joly, P.: Mathematical analysis of elastic surface waves in topographic waveguides. Math. Model. Mech. Appl. Sci. 9(5), 755–798 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borisov, D., Ekholm, T., Kovařík, H.: Spectrum of the magnetic Schrödinger operator in a waveguide with combined boundary conditions. Ann. Henri Poincaré 6(2), 327–342 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Borisov, D., Exner, P., Gadylshin, R., Krejc̆iřík, D.: Bound states in weakly deformed strips and layers. Ann. Henri Poincaré 2, 553–572 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bulla, W., Gesztesy, F., Renger, W., Simon, B.: Weakly coupled bound states in quantum waveguides. Proc. Am. Math. Soc. 125, 1487–1495 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardone, G., Nazarov, S.A., Ruotsalainen, K.M.: Bound states of a converging quantum waveguide. Math. Model. Numer. Anal. 47, 305–315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardone, G., Nazarov, S.A., Taskinen, J.: A criterion for the existence of the essential spectrum for beak-shaped elastic bodies. J. Math. Pures Appl. 92(6), 628–650 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7(1), 73–102 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, D.V., Levitin, M., Vasil’ev, D.: Existence theorems for trapped modes. J. Fluid Mech. 261, 21–31 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Exner, P., Vugalter, S.A.: Bound states in a locally deformed waveguide: the critical case. Lett. Math. Phys. 39, 59–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gadylshin, R.R.: On local perturbations of quantum waveguides. Teor. Mat. Fiz. 145(3), 358–371 (2005). English transl.: Theor. Math. Phys., 145(3), 1678–1690 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kamotskii, I.V., Nazarov, S.A.: Elastic waves localized near periodic sets of flaws. Dokl. Akad. Nauk, Ross. Akad. Nauk 368(6), 771–773 (1999). English transl.: Dokl. Phys. 44(10), 715–717 (1999)

    MathSciNet  Google Scholar 

  14. Kamotskii, I.V., Nazarov, S.A.: Exponentially decreasing solutions of the problem of diffraction by a rigid periodic boundary. Mat. Zametki 73(1), 138–140 (2003). English transl.: Math. Notes 73(1), 129–131 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  16. Kondratiev, V.A.: Boundary value problems for elliptic equations for the systems of elasticity theory in domains with conical or angular points. Trans. Mosc. Math. Soc. 10, 227–313 (1967)

    Google Scholar 

  17. Ladyshenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)

    Book  Google Scholar 

  18. Linton, C.M., McIver, P.: Embedded trapped modes in water waves and acoustics. Wave Motion 45(1), 16–29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  20. Nazarov, S.A.: The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes. Usp. Mat. Nauk 54(5), 77–142 (1999). English transl.: Russ. Math. Surv. 54(5), 947–1014 (1999)

    Article  Google Scholar 

  21. Nazarov, S.A.: Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate. Probl. Mat. Anal. 25, 99–188 (2003). English transl.: J. Math. Sci. 114(5), 1657–1725 (2003)

    MATH  Google Scholar 

  22. Nazarov, S.A.: Trapped modes for a cylindrical elastic waveguide with a damping gasket. Ž. Vyčisl. Mat. Mat. Fiz. 48(5), 863–881 (2008). English transl.: Comput. Math. Math. Phys. 48(5) (2008)

    MathSciNet  MATH  Google Scholar 

  23. Nazarov, S.A.: The spectrum of the elasticity problem for a spiked body. Sib. Mat. Zh. 49(5), 1105–1127 (2008). English transl.: Sib. Math. J., 49(5), 874–893 (2008)

    Article  MATH  Google Scholar 

  24. Nazarov, S.A.: Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains. In: Maz’ya, V. (ed.) Sobolev Space in Mathematics, vol. II. International Mathematics Series, vol. 9, pp. 261–309. Springer, New York (2008)

    Chapter  Google Scholar 

  25. Nazarov, S.A.: Sufficient conditions for the existence of trapped modes in problems of the linear theory of surface waves. Zap. Nauč. Semin. POMI 369, 202–223 (2009) (in Russian). English transl.: J. Math. Sci. 167(5), 713–725 (2010)

    Google Scholar 

  26. Nazarov, S.A.: Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold. Sib. Mat. Zh. 51(5), 1086–1101 (2010). English transl.: Sib. Math. J. 51(5), 866–878 (2010)

    Article  MathSciNet  Google Scholar 

  27. Nazarov, S.A.: Localized elastic fields in periodic waveguides with defects. Prikl. Mekh. Tekhn. Fiz. 52(2), 183–194 (2011). English transl.: J. Appl. Mech. Tech. Phys. 52(2) (2011)

    MathSciNet  MATH  Google Scholar 

  28. Nazarov, S.A.: Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide. Theor. Math. Phys. 167(2), 239–262 (2011). English transl.: Theor. Math. Phys. 167(2), 606–627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nazarov, S.A.: Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle. Ž. Vyčisl. Mat. Mat. Fiz. 52(3), 521–538 (2012). English transl.: Comput. Math. Math. Phys. 52(3), 448–464 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Nazarov, S.A.: The asymptotics of frequencies of elastic waves trapped by a small crack in an anisotropic waveguide. Mekh. Tverd. Tela 45(6), 112–122 (2010). English transl.: Mech. Solids 45, 856–864 (2010)

    Google Scholar 

  31. Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter Expositions in Mathematics, vol. 13. de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  32. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon & Breach, New York (1988)

    Google Scholar 

  33. Roitberg, I., Vassiliev, D., Weidl, T.: Edge resonance in an elastic semi strip. Q. J. Mech. Appl. Math. 51(1), 1–13 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Functional Analysis. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  35. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV. Analysis of Operators. Academic Press, San Diego (1978)

    MATH  Google Scholar 

  36. Suo, Z., Kuo, C.-M., Barnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  38. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1964)

    Google Scholar 

Download references

Acknowledgements

The first author is supported by the Russian Foundation of Basic Research grant 15-01-02175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keijo M. Ruotsalainen.

Appendices

Appendix A: Korn’s Inequality and Singular Weyl Sequence

1.1 A.1 Korn’s Inequality

Here we formulate the well known Korn’s inequality in elasticity and by an evident argument show that it holds in piezoelectricity, too.

Lemma 4

For every \(u\in H^{1}_{0}(\varOmega_{\varTheta};\varGamma_{D})^{4}\) there holds the inequality

$$\begin{aligned} \Vert u; H^{1}(\varOmega_{\varTheta})\Vert\leq C_{\omega,\varTheta}\Vert D(\nabla)u; L^{2}(\varOmega_{\varTheta})\Vert, \end{aligned}$$
(A.1)

where the constant \(C_{\omega,\varTheta}\) depends only on the cross-section \(\omega\) of the cylindrical waveguide and on the set \(\varTheta\).

Proof

We define the truncated waveguide \(\varOmega_{\varTheta}^{N}\) containing the defect \(\varTheta\) by setting \(\varOmega_{\varTheta}^{N}=\{ x\in\varOmega_{\varTheta}: \vert z\vert < N\}\) and the finite cylinders \(\xi^{n}_{\pm}=\{x=(y,z):y\in\omega, \pm z\in(n,n+1)\}\), where \(n = n^{\varTheta}, n^{\varTheta}+1, \ldots\) and \(n^{\varTheta}\) is a natural number such that \(\varTheta\subset\omega\times [-n^{\varTheta},n^{\varTheta}]\). On the bounded Lipschitz domains \(\varOmega_{\varTheta}^{N}\) and \(\xi^{n}_{\pm}\) we have the conventional Korn’s and Friedrich’s inequalities for the mechanical and electrical components

$$\begin{aligned} \big\Vert u^{\mathsf{M}}; H^{1}\bigl( \varOmega _{\varTheta}^{n_{\varTheta}}\bigr)\big\Vert ^{2} \leq& C^{2}_{\varTheta}\big\Vert D^{\mathsf{M}}(\nabla)u^{\mathsf{M}}; L^{2}\bigl(\varOmega_{\varTheta}^{n_{\varTheta}} \bigr)\big\Vert ^{2}, \end{aligned}$$
(A.2)
$$\begin{aligned} \big\Vert u^{\mathsf{M}}; H^{1}\bigl( \xi^{n}_{\pm }\bigr)\big\Vert ^{2} \leq& C^{2}_{\omega}\big\Vert D^{\mathsf{M}}(\nabla)u^{\mathsf{M}}; L^{2}\bigl(\xi^{n}_{\pm}\bigr)\big\Vert ^{2}, \end{aligned}$$
(A.3)
$$\begin{aligned} \big\Vert u^{\mathsf{E}}; H^{1}\bigl( \varOmega _{\varTheta}^{n_{\varTheta}}\bigr)\big\Vert ^{2} \leq& C^{2}_{\varTheta}\big\Vert \nabla u^{\mathsf{E}}; L^{2} \bigl(\varOmega _{\varTheta}^{n_{\varTheta}}\bigr)\big\Vert ^{2}, \end{aligned}$$
(A.4)
$$\begin{aligned} \big\Vert u^{\mathsf{E}}; H^{1}\bigl( \xi^{n}_{\pm }\bigr)\big\Vert ^{2} \leq& C^{2}_{\omega}\big\Vert \nabla u^{\mathsf{E}}; L^{2} \bigl(\xi ^{n}_{\pm}\bigr)\big\Vert ^{2}. \end{aligned}$$
(A.5)

These inequalities are valid because the Dirichlet conditions (3) are imposed on the non-empty parts with a positive area of the lateral surfaces of the sets \(\varOmega_{\varTheta}^{n_{\varTheta}}\) and \(\xi^{n}_{\pm}\). Furthermore, the constants \(C_{\omega}\) in inequalities (A.3) and (A.5) do not depend on the indexes \(n\) and ± due to the similarity of the sets. By taking the smallest possible \(n_{\varTheta}\), we can conclude that the constants \(C_{\varTheta}\) in inequalities (A.2) and (A.4) depend only on \(\varTheta\) and \(\omega\). Summing up all the inequalities (A.2)–(A.5) we obtain (A.1). □

1.2 A.2 The Singular Weyl Sequence

Lemma 5

For \(\lambda\geq\lambda_{\dagger}\) the operator \(\mathcal{A}(\lambda):H^{1}_{0}(\varOmega_{\varTheta};\varGamma_{D})\to H^{1}_{0}(\varOmega_{\varTheta};\varGamma_{D})^{\ast}\) is not a Fredholm operator.

To prove the statement, we make use of the wave (16) multiplied with the plateau function \(X_{N}(z)\in C^{\infty}_{c}(\mathbb{R})\) defined as follows:

$$ X_{N}(z)=\left\{ \textstyle\begin{array}{l@{\quad}l} 1 & \mbox{for } z\in(2^{N}+1,2^{N+1}-1),\\ 0 & \mbox{for } z\notin(2^{N},2^{N+1}). \end{array}\displaystyle \right. $$

The graph of this function is depicted in Fig. 7. Clearly, we have

$$\begin{aligned} \Vert X_{N}w;H^{1}( \varOmega_{\varTheta})\Vert^{2}&\geq\Vert X_{N}w;L^{2}( \varOmega_{\varTheta})\Vert^{2} =\Vert X_{N}w;L^{2}( \varOmega)\Vert^{2} \\ &\geq \int^{2^{N+1}-1}_{2^{N}+1}dz \Vert U;L^{2}( \omega)\Vert^{2} =c_{w}\bigl(2^{N+1}-2^{N}-2 \bigr). \end{aligned}$$
(A.6)
Fig. 7
figure 7

The plateau function

On the other hand, by the definition of the wave (16), the expressions

$$L(x,\nabla) \bigl(X_{N}(z)e^{i\zeta z}U(y)\bigr)-\lambda\rho(y)E X_{N}(z)e^{i\zeta z}U(y) $$

and

$$B(x,\nabla) \bigl(X_{N}(z)e^{i\zeta z}U(y)\bigr) $$

differ from zero only for \(z\in(2^{N},2^{N+1})\) and \(z\in (2^{N+1}-1,2^{N+1})\) so that

$$\begin{aligned} \Vert \mathcal{A}(\lambda)X_{N}w; \bigl(H^{1}_{0}(\varOmega _{\varTheta}; \varGamma_{N})^{4}\bigr)^{*}\Vert^{2} \leq& \Vert LX_{N} w-\lambda\rho EX_{N}w;L^{2}( \varOmega_{\varTheta})\Vert^{2} \\ &{}+\Vert BX_{N}w;L^{2}(\varGamma_{N})\Vert^{2} \leq2C_{w}, \end{aligned}$$
(A.7)

where the right-hand side of the inequality is a constant independent on \(N\). Thus the estimate

$$\begin{aligned} \Vert u;H^{1}(\varOmega_{\varTheta})\Vert\leq K\big\Vert \mathcal{A}( \lambda)u;\bigl(H^{1}_{0}(\varOmega_{\varTheta}; \varGamma _{D})^{4}\bigr)^{*}\big\Vert \end{aligned}$$

is not valid for the infinite family \(\{X_{N}w\}_{N\geq N(K)}\) of linearly independent vector functions (due to mutually disjoint supports) and estimate (42) cannot hold true for any \(u\in H^{1}_{0}(\varOmega_{\varTheta};\varGamma_{D})^{4}\setminus\operatorname{ker} \mathcal{A}(\lambda)\). Here \(N(K)\in\mathbb{N}\) is fixed such that, in accordance with inequalities (A.6) and (A.7),

$$\begin{aligned} c_{w}\bigl(2^{N(K)+1}-2^{N(K)}-2\bigr)\geq 2KC_{w}. \end{aligned}$$

With the help of the same family of trial functions we can construct directly the singular Weyl sequence for the operator ℳ at the point \(\mu=\lambda ^{-1}\) and apply the Weyl criterion, see [2, Thm. 9.1.2] and [34, Thm. VII.12]. However, in view of the reduction scheme this needs long routine calculations which are omitted here for brevity. It should be mentioned the circuitous route based on the Dirichlet condition (3): the assumed Fredholm property of \(\mathcal{M}-\mu\) and the isomorphism of the operator related to the scalar problem (9) pass the first one to the operator (41), for which it has been disproved.

Remark 4

The expressions in the previous considerations have sense in the case of the smooth boundary \(\partial\omega\). If the boundary is Lipschitz, we have to consider the integral identity with a test function \(v\in H^{1}_{0}(\varOmega _{\varTheta},\varGamma_{D})^{4}\):

$$\begin{aligned} & \big(AD\bigl(\nabla(X_{N}w)\bigr),D(\nabla)v\bigr)_{\varOmega_{\varTheta}}-\lambda\bigl( \rho X_{N} w^{\mathsf{M}},v^{M}\bigr) \\ &\quad=\bigl(AD(\nabla)w,D(\nabla) (X_{n}v)\bigr)_{\varOmega}-\lambda \bigl(\rho w^{\mathsf{M}},X_{N}v^{M}\bigr)_{\varOmega}+F_{N}(v), \end{aligned}$$

where

$$F_{N}(v)=\bigl(A\bigl[D(\nabla),X_{N}\bigr]w,D(\nabla)v \bigr)_{\varOmega}- \bigl(AD(\nabla)w,\bigl[D(\nabla),X_{N}\bigr]v \bigr)_{\varOmega}. $$

Here \([D(\nabla),X_{N}]\) is the commutator of \(D(\nabla)\) and \(X_{N}\), i.e. just a matrix function \(z\mapsto D(0,0,\partial_{z})X_{N}(z)\).

Using the formula (16) for \(w\), we have

$$\begin{aligned} &\bigl(AD(\nabla)w,D(\nabla) (X_{N} v)\bigr)_{\varOmega}- \lambda \bigl(\rho w^{\mathsf{M}},X_{N}v^{M}\bigr)_{\varOmega} \\ &\quad= \int_{\mathbb{R}} \bigl\{ \bigl(AD(\nabla_{y},i\zeta)U, D( \nabla_{y},i\zeta) \bigl(e^{-i\zeta z}X_{N}(z)v(\cdot,z) \bigr)\bigr)_{\omega}\\ &\quad\quad{}-\lambda\bigl(\rho U^{\mathsf{M}},e^{-i\zeta z}X_{N}(z)v( \cdot,z)\bigr)_{\omega}\bigr\} dz \\ &\quad\quad{}+ \int_{\mathbb{R}}\bigl(AD(\nabla_{y},i\zeta)U, D(0, \partial_{z}) \bigl(e^{-i\zeta z}X_{N}(z)v(\cdot,z)\bigr) \bigr)_{\omega}dz. \end{aligned}$$

The first integral is zero because \(U,\zeta\) and \(\lambda\) satisfy (20). The second integral vanishes, because after computing the scalar product in \(L^{2}(\omega)\), it becomes

$$\int_{\mathbb{R}}\partial_{z}\bigl(X_{N}(z) \rho(z)\bigr)dz=0. $$

Finally,

$$ |F_{N}(v)|\leq c \big\| v;H^{1}\bigl(\omega\times \mathrm{supp}(\partial_{z}X_{N})\bigr)\big\| , $$
(A.8)

where \(c\) does not depend on \(N\) and support of \(\partial_{z}X_{N}\). The estimate (A.8) is nothing but the interpretation of (42) in the case when \(\omega\) has a Lipschitz boundary.

Appendix B: Calculation of the Rayleigh Quotient

2.1 B.1 Calculation of the Numerator in the Rayleigh Quotient

In this section we evaluate the norm of the operator ℳ

$$\begin{aligned} \Vert \mathcal{M}\Vert=\sup_{u^{\mathsf{M}}\in\mathcal{H}\setminus {0}}\frac{\langle\mathcal{M}u^{\mathsf{M}}, u^{\mathsf{M}}\rangle_{\varOmega_{\varTheta}}}{\langle u^{\mathsf{M}},u^{\mathsf{M}}\rangle_{\varOmega_{\varTheta}}}, \end{aligned}$$
(B.1)

which provides the sufficient condition for the existence of the trapped wave.

Let us define

$$\begin{aligned} w^{\mathsf{M}}_{\delta}(y,z)=e^{-\delta|z|}w^{\mathsf{M}}_{\dagger}(y,z) \end{aligned}$$
(B.2)

with small \(\delta>0\) and \(w^{\mathsf{M}}_{\dagger}\) taken from (43). Note that, in view of the exponential factor \(e^{-\delta|z|}\), this vector function falls into \(H^{1}_{0}(\varOmega_{\varTheta};\varGamma_{D})^{3}\). To calculate the numerator in the Rayleigh quotient, we apply (14) and (43) to obtain

$$\begin{aligned} \bigl\langle \mathcal{M}w^{\mathsf{M}}_{\delta},w^{\mathsf {M}}_{\delta} \bigr\rangle &=\bigl(\rho w^{\mathsf{M}}_{\delta},w^{\mathsf {M}}_{\delta} \bigr)_{\varOmega_{\varTheta}}= \bigl(\rho w^{\mathsf{M}}_{\delta },w^{\mathsf{M}}_{\delta} \bigr)_{\varOmega}-\bigl(\rho w^{\mathsf{M}}_{\delta},w^{\mathsf {M}}_{\delta} \bigr)_{\varTheta} \\ &= \int_{\mathbb{R}}e^{-2\delta|z|}dz \bigl(\rho U^{\mathsf {M}}_{\dagger},U^{\mathsf{M}}_{\dagger} \bigr)_{\omega}- \int_{\varTheta}\rho(y)e^{-2\delta|z|}|U^{\mathsf{M}}_{\dagger }(y)|^{2}dydz \\ &=\delta^{-1}\bigl(\rho U^{\mathsf{M}}_{\dagger},U^{\mathsf {M}}_{\dagger} \bigr)_{\omega}-\bigl(\rho U^{\mathsf{M}}_{\dagger}, U^{\mathsf{M}}_{\dagger}\bigr)_{\varTheta}+O(\delta). \end{aligned}$$
(B.3)

We have used the Taylor expansion \(e^{-2\delta|z|}=1+O(\delta)\) and the simple formula

$$ \int_{\mathbb{R}}e^{-2\delta|z|}dz=\frac{1}{\delta}. $$
(B.4)

2.2 B.2 Calculation of the Denominator

To evaluate the denominator we shall use the following auxiliary lemmata.

Lemma 6

The problem

$$\begin{aligned} &\bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf {E}}_{\bullet},D^{\mathsf{E}}v^{\mathsf{E}} \bigr)_{\varOmega_{\varTheta}}= \bigl(A^{\mathsf{E}\mathsf {M}}D^{\mathsf{M}}w^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\dagger},D^{\mathsf{E}}v^{E} \bigr)_{\varOmega_{\varTheta}} \\ &\quad\forall v^{E}\in H^{1}_{0}( \varOmega_{\varTheta},\varGamma_{D}) \end{aligned}$$
(B.5)

has a unique solution \(w^{\mathsf{E}}_{\bullet}\in H^{1}_{0}(\varOmega _{\varTheta},\varGamma_{D})\). Moreover, the solution \(w^{\mathsf{E}}_{\bullet}\) decays exponentially at infinity, i.e. the inclusion \(e^{\beta|z|}w^{\mathsf{E}}_{\bullet}\in H^{1}_{0}(\varOmega_{\theta},\varGamma_{D})\) holds for some \(\beta>0\).

Proof

If the coefficients are smooth, the differential formulation of the problem (B.5) takes the form

$$\begin{aligned} &-D^{\mathsf{E}}(\nabla)^{\top}A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}( \nabla)w^{\mathsf{E}}_{\bullet}(x) \\&\quad=f^{\mathsf{E}}_{\bullet}(x) :=D^{\mathsf{E}}(\nabla)^{\top}\bigl(A^{\mathsf{E}\mathsf {E}}(y)D^{\mathsf{E}}( \nabla)w^{\mathsf{E}}_{\dagger}(x)- A^{\mathsf{E}\mathsf {M}}(y)D^{\mathsf{M}}( \nabla)w^{\mathsf{M}}_{\dagger}(x) \bigr),\quad x\in\varOmega_{\varTheta}, \\ &-D^{\mathsf{E}}\bigl(\nu(x)\bigr)^{\top}A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}} \bigl(\nu(x)\bigr)w^{\mathsf{E}}_{\bullet}(x)\\&\quad=g^{\mathsf {E}}_{\bullet}(x) :=D^{\mathsf{E}}\bigl(\nu(x)\bigr)^{\top}\bigl(A^{\mathsf{E}\mathsf{E}}(y)D^{\mathsf{E}}(\nabla)w^{\mathsf {E}}_{\dagger}(x)- A^{\mathsf{E}\mathsf{M}}(y)D^{\mathsf{M}}(\nabla)w^{\mathsf {M}}_{\dagger}(x) \bigr),\quad x\in\varGamma_{N}\cup\partial\varTheta, \\ & w^{\mathsf{E}}_{\bullet}=0,\quad x\in\varGamma_{D}. \end{aligned}$$
(B.6)

Since \(w_{\dagger}=(w^{\mathsf{M}}_{\dagger},w^{\mathsf{E}}_{\dagger})\) satisfies the problem (1)–(3) in the unperturbed cylinder \(\varOmega \), we see that \(f^{\mathsf{E}}_{\bullet}=0\) in \(\varOmega_{\varTheta}\), \(g^{\mathsf {E}}_{\bullet}=0\) on \(\varGamma_{N}\). Therefore, the right-hand sides in (B.6) have compact supports. To conclude a similar property in the variational formulation of the problem (B.5), we will verify that the right-hand side of (B.5) depends only on the restriction of a test function \(v^{E}\) onto the compact set \(\varOmega_{\varTheta}^{n}=\{x\in\varOmega_{\varTheta}: |z|< n_{\varTheta}\}\), cf. the proof of Lemma 2.1. In other words, the functional \(F^{\mathsf{E}}_{\bullet}(v^{\mathsf {E}})\) on the right-hand side of (B.5) is compactly supported. Then the assertion follows from the theory of elliptic problems in domains with cylindrical outlets to infinity (see in particular [31, §2.2, §5.1 ], [20, Example 1.12 and Thm. 3.4] and [24, §2]). The latter is a consequence of the cylindrical structure of the nonempty Dirichlet zone \(\varGamma_{D}\). We, however, will provide a simple argument to this conclusion in Remark 5.

Next we proceed by evaluating the integral

$$\begin{aligned} & \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf {M}}w^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf {E}}w^{\mathsf{E}}_{\dagger},D^{\mathsf{E}}v^{E} \bigr)_{ \omega\times(n_{\varTheta}, \infty)} \\ &\quad= \int_{n_{\varTheta}}^{\infty} \bigl(A^{\mathsf{E}\mathsf {M}}D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}-A^{\mathsf {E}\mathsf{E}}D^{\mathsf{E}}( \nabla_{y}, i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger}) \bigl(e^{-i\zeta_{\dagger}|z|}v^{E}(\cdot,z) \bigr) \bigr)_{\omega}dz \\ &\quad\quad{}+ \int_{n_{\varTheta}}^{\infty} \bigl(A^{\mathsf{E}\mathsf {M}}D^{\mathsf{M}}( \nabla,i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}} (\nabla_{y}, i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}(0,0,\partial_{z}) \bigl(e^{-i\zeta_{\dagger}|z|}v(\cdot,z) \bigr) \bigr)_{\omega}dz. \end{aligned}$$
(B.7)

The first integral on the right in (B.7) vanishes due to the integral identity (20) where we set \(\zeta=\zeta_{\dagger}, \varLambda (\zeta)=\lambda_{\dagger}\) and \(V(y)=(0,e^{-i\zeta_{\dagger}|z|}v(y,z))\). Since the last integrand takes the form \(a(y)\partial_{z} b(y,z)\), the Newton-Leibnitz formula shows that the second integral in (B.7) becomes

$$- \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}(\nabla_{y},i \zeta_{\dagger})U^{\mathsf{M}}_{\dagger}- A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger},D^{\mathsf {E}}(0,0,1)e^{-i\zeta_{\dagger}|n_{\varTheta}|} v \bigr)_{\omega}$$

and depends clearly only on the restriction \(v |_{\varOmega ^{n_{\varTheta}}_{\varTheta}}\). The opposite end \(\omega\times(-\infty,-n_{\varTheta})\) is treated similarly and hence the lemma is proved. □

Remark 5

Let us reproduce a simple argument presented in [25] to ensure the exponential decay of the solution \(w^{\mathsf{E}}_{\bullet}\in H^{1}_{0}(\varOmega_{\varTheta};\varGamma_{D})\) of the problem (B.5). We introduce the continuous weight function

$$ \mathcal{R}(z)= \textstyle\begin{cases} \mathrm{e}^{\beta|z|},& |z|< T,\\ \mathrm{e}^{\beta T},& |z|\geq T, \end{cases} $$
(B.8)

depending on two positive parameters \(\beta\) and \(T\). Since the weight function is bounded, we may insert the product \(v^{\mathsf{E}}=\mathcal{R}^{2} w^{\mathsf{E}}_{\bullet}=:\mathcal{R}W^{\mathsf{E}}_{\bullet}\) into (B.5) as a test function, and after transporting ℛ from \(W^{\mathsf{E}}_{\bullet}\) onto \(w^{\mathsf{E}}_{\bullet}\) we obtain

$$\begin{aligned} F^{\mathsf{E}}_{\bullet}\bigl(\mathcal{R}W^{\mathsf{E}}_{\bullet}\bigr) =&\bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}\bigl(\mathcal{R}W^{\mathsf{E}}_{\bullet}\bigr) \bigr)_{\varOmega_{\varTheta}} \\ =&\bigl(A^{\mathsf{E}\mathsf{E}}\mathcal{R}D^{\mathsf{E}} w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}W^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}}+ \bigl(A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\bullet}, \bigl[D^{\mathsf{E}}, \mathcal{R}\bigr]W^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}} \\ =&\bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}W^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}W^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}}- \bigl(A^{\mathsf{E}\mathsf{E}}\mathcal{R}^{-1} \bigl[D^{\mathsf{E}}, \mathcal{R}\bigr] W^{\mathsf{E}}_{\bullet}, \mathcal{R}^{-1} \bigl[D^{\mathsf{E}}, \mathcal{R}\bigr]W^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}} \\ &{}-\bigl(A^{\mathsf{E}\mathsf{E}}\mathcal{R}^{-1} \bigl[D^{\mathsf{E}},\mathcal{R}\bigr] W^{\mathsf{E}}_{\bullet},D^{\mathsf{E}} W^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}}+ \bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}} W^{\mathsf{E}}_{\bullet}, \mathcal{R}^{-1} \bigl[D^{\mathsf{E}},\mathcal{R}\bigr]W^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}}. \end{aligned}$$
(B.9)

Recalling the symmetry and positivity of the matrix \(A^{\mathsf {E}\mathsf{E}}\), we observe that the last two terms in (B.9) compose a purely imaginary number. Secondly, according to (A.4) and (A.5),

$$ \bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}W^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}W^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}}\geq c_{\varTheta}\|W^{\mathsf{E}}_{\bullet}; H^{1}( \varOmega_{\varTheta})\|^{2}. $$
(B.10)

Moreover, by (B.8) the vector function \([D^{\mathsf{E}},\mathcal{R}]=D^{\mathsf{E}}(0,0,\partial_{z})\mathcal{R}\) satisfies

$$ \big|\bigl[D^{\mathsf{E}},\mathcal{R}\bigr](z)\big|\leq c\beta \mathcal{R}(z),\ |z|< T\quad\mbox{and}\quad\bigl[D^{\mathsf{E}},\mathcal{R} \bigr](z)= 0,\ |z|>T. $$
(B.11)

Since the functional \(F^{\mathsf{E}}_{\bullet}\) is compactly supported, the left-hand side does not depend on \(T>n_{\varTheta}\). Hence, for a sufficiently small \(\beta>0\) we take the real part of (B.9) and derive from (B.10), (B.11) the relation

$$\|W^{\mathsf{E}}_{\bullet};H (\varOmega_{\varTheta})\|^{2} \leq c_{\beta}\big|\operatorname{Re} F^{\mathsf{E}}_{\bullet}\bigl(w^{\mathsf{E}}_{\bullet}\bigr)\big|. $$

Letting \(T\) tend to infinity, we finally observe that \(e^{\beta |z|}w^{\mathsf{E}}_{\bullet}\in H^{1}_{0}(\varOmega_{\varTheta};\varGamma_{D})\).

Lemma 7

For

$$\begin{aligned} w^{\mathsf{M}}_{\delta}(y,z)=e^{-\delta|z|}w^{\mathsf{M}}_{\dagger}(y,z) \end{aligned}$$
(B.12)

and

$$\begin{aligned} w^{\mathsf{E}}_{\delta}(y,z)=e^{-\delta|z|}e^{i\zeta _{\dagger}z}U^{\mathsf{E}}_{\dagger}(y), \widehat{w}^{\mathsf{E}}_{\delta}=Rw^{\mathsf{M}}_{\delta}-w^{\mathsf{E}}_{\delta}, \end{aligned}$$
(B.13)

the problem

$$\begin{aligned} &\bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}\widehat {w}^{\mathsf{E}}_{\delta},D^{\mathsf{E}}v^{\mathsf{E}} \bigr)_{\varOmega_{\varTheta}}= \bigl(A^{\mathsf{E}\mathsf {M}}D^{\mathsf{M}}w^{\mathsf{M}}_{\delta}-A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\delta},D^{\mathsf{E}}v^{\mathsf{E}} \bigr)_{\varOmega_{\varTheta}} \\ &\quad\forall v^{\mathsf{E}}\in H^{1}_{0}( \varOmega_{\varTheta};\varGamma_{D}). \end{aligned}$$
(B.14)

has a unique solution \(\widehat{w}^{\mathsf{E}}_{\delta}\in H^{1}_{0}(\varOmega_{\varTheta},\varGamma_{D})\) and it takes the form

$$ \widehat{w}^{\mathsf{E}}_{\delta}(y,z)=e^{-\delta|z|} \biggl(w^{\mathsf{E}}_{\bullet}(y,z)+ \delta\sum _{\pm}\pm\chi_{\pm}(z)e^{i\zeta_{\dagger}z}U^{\mathsf{E}}_{\bullet}(y) \biggr) +\widetilde{w}^{\mathsf{E}}_{\delta}, $$
(B.15)

where \(w^{\mathsf{E}}_{\bullet}\) is the exponentially decaying function given in Lemma 6, \(U^{\mathsf{E}}_{\bullet}\) is a function in \(H^{1}_{0}(\omega,\gamma_{D})\), \(\chi_{\pm}\) are smooth cut-off functions such that \(0\leq\chi_{\pm}\leq1\) and

$$\chi_{\pm}(z)= \textstyle\begin{cases} 1, &\textit{for }\pm z\geq2n_{\varTheta},\\ 0,&\textit{for }\pm z\leq n_{\varTheta}. \end{cases} $$

The remainder \(\widetilde{w}^{\mathsf{E}}_{\delta}\) satisfies the estimate

$$ \|\widetilde{w}^{E}_{\delta};H^{1}_{0}( \varOmega_{\varTheta};\varGamma_{D})\|\leq c\delta. $$
(B.16)

Proof

The remainder \(\widetilde{w}^{E}_{\delta}\) in (B.15) must be a solution of the problem

$$ \bigl(A^{EE}D^{\mathsf{E}}\widetilde{w}^{\mathsf{E}}_{\delta},D^{\mathsf{E}}v^{\mathsf{E}} \bigr)=\widetilde{f}_{\delta}\bigl(v^{\mathsf{E}}\bigr)\quad\forall v^{\mathsf{E}}\in H^{1}_{0}(\varOmega_{\varTheta}, \varGamma_{D}) $$

with the right-hand side

$$\begin{aligned} \widetilde{f}_{\delta}\bigl(v^{\mathsf{E}}\bigr) =& \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}\mathrm{e}^{-\delta |z|}w^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}} \mathrm{e}^{-\delta|z|}\bigl(w^{\mathsf{E}}_{\dagger}-w^{\mathsf{E}}_{\bullet}\bigr),D^{\mathsf{E}}v^{\mathsf{E}}\bigr)_{\varOmega_{\varTheta}} \\ &{}-\delta\sum_{\pm}\pm\bigl( A^{\mathsf{E}\mathsf{E}}D^{\mathsf {E}}e^{-\delta|z|}w^{\mathsf{E}}_{\bullet},D^{\mathsf{E}}v^{\mathsf{E}} \bigr)_{\varOmega_{\varTheta}} \\ &{}-\delta\sum_{\pm} \pm\bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}} \chi_{\pm}e^{-\delta|z|} e^{i\zeta_{\dagger}z}U^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}v^{E} \bigr)_{\varOmega_{\varTheta}} \\ =:& \mathcal{F}^{\mathsf{E}}_{\delta}\bigl(v^{\mathsf{E}}\bigr)- \delta\mathcal{F}^{\mathsf{E}}_{\delta_{\dagger}}\bigl(v^{\mathsf{E}}\bigr). \end{aligned}$$

The first term \(\mathcal{F}^{\mathsf{E}}_{\delta}(v^{\mathsf{E}})\) on the right can be written as follows:

$$\begin{aligned} \mathcal{F}^{\mathsf{E}}_{\delta}\bigl(v^{\mathsf{E}} \bigr) =& \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}w^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}\bigl(w^{\mathsf{E}}_{\dagger}-w^{\mathsf{E}}_{\bullet}\bigr), D^{\mathsf{E}}v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega _{\varTheta}} \\ &{}+\delta\mathcal{F}^{\mathsf{E}}_{\dagger}\bigl(v^{\mathsf{E}}_{\delta}\bigr)-\delta\mathcal{F}^{\mathsf{E}}_{\delta\bullet} \bigl(v^{\mathsf{E}}_{\delta}\bigr)- \delta^{2}\widetilde{ \mathcal{F}}^{\mathsf{E}}_{\delta}\bigl(v^{\mathsf{E}}_{\delta}\bigr), \end{aligned}$$
(B.17)

where \(v^{\mathsf{E}}_{\delta}(y,z)=\mathrm{e}^{-\delta|z|}v^{\mathsf{E}}(y,z)\) is a modified test function and

$$\begin{aligned} \mathcal{F}^{\mathsf{E}}_{\dagger}\bigl(v^{\mathsf{E}}_{\delta}\bigr) =& \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}\bigl(0,0,\mathrm{sign}(z) \bigr)w^{\mathsf{M}}_{\dagger}- A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}} \bigl(0,0,\mathrm{sign}(z)\bigr)w^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}} v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega_{\varTheta}} \\ &{}- \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}w^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}} D^{\mathsf{E}}w^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}\bigl(0,0,\mathrm{sign}(z)\bigr) v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega_{\varTheta}}, \\ \mathcal{F}^{\mathsf{E}}_{\delta\bullet}\bigl(v^{\mathsf{E}}_{\delta}\bigr) =& \bigl( A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}\bigl(0,0,\mathrm{sign}(z) \bigr)w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega_{\varTheta}} - \bigl( A^{\mathsf{E}\mathsf{E}} D^{\mathsf{E}} w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}\bigl(0,0,\mathrm{sign}(z)\bigr) v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega_{\varTheta}}, \\ \widetilde{\mathcal{F}}^{\mathsf{E}}_{\delta}\bigl(v^{\mathsf{E}}_{\delta}\bigr) =& \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}\bigl(0,0,\mathrm{sign}(z) \bigr)w^{\mathsf{M}}_{\dagger}\\ &{}- A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}} \bigl(0,0,\mathrm{sign}(z)\bigr) \bigl(w^{\mathsf{E}}_{\dagger}-w^{\mathsf{E}}_{\bullet}\bigr), D^{\mathsf{E}}\bigl(0,0,\mathrm{sign}(z)\bigr) v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega_{\varTheta}}. \end{aligned}$$

The first scalar product in (B.17) vanishes according to the definition of \(w^{\mathsf{E}}_{\bullet}\), see the integral identity (B.5) with the change \(v^{\mathsf{E}}\mapsto v^{\mathsf{E}}_{\delta}\). We subtract from \(\mathcal{F}^{\mathsf{E}}_{\dagger}(v^{\mathsf{E}}_{\delta})\) the sum

$$\begin{aligned} \mathcal{F}^{\mathsf{E}}_{\pm}\bigl(v^{\mathsf{E}}_{\delta}\bigr) =&\sum_{\pm}\pm\bigl( A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}(0,0,1)w^{\mathsf{M}}_{\dagger}- A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}(0,0,1) w^{\mathsf{E}}_{\dagger}, \chi_{\pm}D^{\mathsf{E}}(\nabla)v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega_{\varTheta}} \\ &{}- \bigl( A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}(\nabla)w^{\mathsf{M}}_{\dagger}- A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}(\nabla) w^{\mathsf{E}}_{\dagger}, \chi_{\pm}D^{\mathsf{E}}(0,0,1)v^{\mathsf{E}}_{\delta}\bigr)_{\varOmega_{\varTheta}} \end{aligned}$$
(B.18)

and observe that the remaining parts on the first position in the scalar products get compact supports. So the estimate

$$ \delta\big|\mathcal{F}^{\mathsf{E}}_{\dagger}\bigl(v^{\mathsf{E}}_{\delta}\bigr)- \mathcal{F}^{\mathsf{E}}_{\pm}\bigl(v^{\mathsf{E}}_{\delta}\bigr)\big| \leq c\delta\|v^{\mathsf{E}};H^{1}( \varOmega_{\varTheta})\| $$
(B.19)

becomes evident. Since \(w^{\mathsf{E}}_{\bullet}\) decays exponentially, see Lemma 6, we also have

$$\delta|\mathcal{F}^{\mathsf{E}}_{\delta\bullet}|\leq c \delta \|v^{\mathsf{E}};H^{1}(\varOmega_{\varTheta})\|. $$

Moreover, the equality (B.4) (the functions \(w^{\mathsf{M}}_{\dagger}\) and \(w^{\mathsf{E}}_{\bullet}\) are bounded) yields

$$\begin{aligned} \delta^{2}\big|\widetilde{\mathcal{F}}^{\mathsf{E}}_{\delta}\bigl(v^{\mathsf{E}}_{\delta}\bigr)\big| \leq& c\delta^{2} \bigl( \|w^{\mathsf{E}}_{\bullet};L^{2}(\varOmega_{\varTheta})\| +\| \mathrm{e}^{-\delta|z|}w^{\mathsf{M}}_{\dagger};L^{2}( \varOmega_{\varTheta})\| \\ &{}+\|\mathrm{e}^{-\delta|z|}w^{\mathsf{M}}_{\dagger};L^{2}( \varOmega_{\varTheta})\| \bigr) \|v^{\mathsf{E}};H^{1}( \varOmega_{\varTheta})\|\leq c\delta^{3/2} \|v^{\mathsf{E}};H^{1}( \varOmega_{\varTheta})\|. \end{aligned}$$
(B.20)

Finally, recalling the definition (43), we choose \(U^{\mathsf{E}}_{\bullet}\) as a solution of the following problem on the cross-section \(\omega\):

$$\begin{aligned} & \big( A^{\mathsf{E}\mathsf{E}} D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger}) V^{\mathsf{E}} \big)_{\omega}\\ &\quad= \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}(0,0,1)U^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}(0,0,1)U^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger})V^{\mathsf{E}} \bigr)_{\omega}\\ &\quad\quad{}+ \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}(\nabla_{y},i \zeta_{\dagger})U^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}(0,0,1)V^{\mathsf{E}}\bigr)_{\omega} \end{aligned}$$

for all \(V^{\mathsf{E}}\in H^{1}_{0}(\omega;\gamma_{D})\), which is uniquely solvable due to the Dirichlet condition on \(\gamma _{D}\). The justification of this is exactly the same as for the problem (26). Our choice of \(U^{\mathsf{E}}_{\bullet}\) means that the principal terms in the expressions \(\delta\mathcal {F}^{\mathsf{E}}_{\delta\dagger}\) in (B.17) and \(\delta\mathcal{F}^{\mathsf{E}}_{\delta\pm}\) (B.18) cancel each other out leaving just two sorts of scalar products. First, scalar products containing the factor \(\delta\) and compactly supported functions at the first position which appear due to the commuting of the cut-off functions with the differential operators. Secondly, we have scalar products with the factor \(\delta^{2}\) and bounded functions multiplied by \(\mathrm {e}^{-\delta|z|}\) at the first position. Both cases have been examined in (B.19) and (B.20). Thus, the inequality

$$\delta\big|\mathcal{F}^{\mathsf{E}}_{\delta\dagger}\bigl(v^{\mathsf{E}}\bigr)- \mathcal{F}^{\mathsf{E}}_{\pm}\bigl(v^{\mathsf{E}}\bigr)\big|\leq c \bigl(\delta+\delta^{3/2}\bigr) \|v^{\mathsf{E}};H^{1}( \varOmega_{\varTheta})\| $$

completes the proof of the lemma. □

Now we are in position to evaluate the denominator of the Rayleigh quotient. First of all, we use the definitions of the bi-linear form (12) and the scalar product \(\langle\cdot,\cdot\rangle\) in ℋ to obtain

$$\begin{aligned} \bigl\langle w^{\mathsf{M}}_{\delta},w^{\mathsf{M}}_{\delta} \bigr\rangle =&\bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}(\nabla )w^{\mathsf{M}}_{\delta},D^{\mathsf{M}}( \nabla)w^{\mathsf{M}}_{\delta}\bigr)_{\varOmega_{\varTheta}} \\ &{}+\bigl(A^{\mathsf{M}\mathsf{E}}\nabla Rw^{\mathsf{M}}_{\delta },D^{\mathsf{M}}( \nabla)w^{\mathsf{M}}_{\delta}\bigr)_{\varOmega_{\varTheta}}, \end{aligned}$$
(B.21)

where \(R\omega^{\mathsf{M}}_{\delta}\in H^{1}_{0}(\varOmega _{\varTheta};\varGamma_{D})\) is a unique solution of the problem, cf. (9),

$$\begin{aligned} \bigl(A^{\mathsf{E}\mathsf{E}}\nabla Rw^{\mathsf{M}}_{\delta}, \nabla v^{\mathsf{E}}\bigr)_{\varOmega_{\varTheta}}= \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}( \nabla)w^{\mathsf{M}} _{\delta},\nabla v^{\mathsf{E}} \bigr)_{\varOmega_{\varTheta}} \quad\forall v^{\mathsf{E}}\in H^{1}_{0}( \varOmega_{\varTheta};\varGamma_{D}). \end{aligned}$$
(B.22)

We set, as in Lemma 7,

$$\begin{aligned} w^{\mathsf{E}}_{\delta}(y,z)=e^{-\delta|z|}e^{i\zeta_{\dagger }z}U^{\mathsf{E}}_{\dagger}(y), \widehat{w}^{\mathsf{E}}_{\delta}=Rw^{\mathsf{M}}_{\delta}-w^{\mathsf{E}}_{\delta}. \end{aligned}$$
(B.23)

Using (B.22), the function \(\widehat{w}^{\mathsf{E}}_{\delta}\) becomes a solution to the problem (B.14) in Lemma 7. Moreover, the denominator of the Rayleigh quotient turns into

$$\begin{aligned} \bigl\langle w^{\mathsf{M}}_{\delta},w^{\mathsf{M}}_{\delta}\bigr\rangle =& \bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}w^{\mathsf{M}}_{\delta}+A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}} w^{\mathsf{E}}_{\delta},D^{\mathsf{M}}w^{\mathsf{M}}_{\delta}\bigr)_{\varOmega_{\varTheta}} \\ &{}+\bigl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}\widehat{w}^{\mathsf{E}}_{\delta}, D^{\mathsf{M}}w^{\mathsf{M}}_{\delta}\bigr)_{\varOmega_{\varTheta}}. \end{aligned}$$
(B.24)

For the computation of the first scalar product, we proceed in the same way as in (B.3):

$$\begin{aligned} &\bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}w^{\mathsf{M}}_{\delta}+A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf {E}}_{\delta},D^{\mathsf{M}}w^{\mathsf{M}}_{\delta}\bigr)_{\varOmega_{\varTheta}} \\ &\quad= \int_{\mathbb{R}}e^{-2\delta|z|} \bigl(\bigl(A^{\mathsf{M}\mathsf {M}}D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}(y), D^{\mathsf{M}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}(y) \bigr)_{\omega}\bigr)dz \\ &\quad\quad{}+ \int_{\mathbb{R}}e^{-2\delta|z|} \bigl(\bigl(A^{\mathsf{M}\mathsf {E}}D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}(y), D^{\mathsf{M}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}(y) \bigr)_{\omega}\bigr)dz \\ &\quad\quad{}-\bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}(\nabla)w^{\mathsf {M}}_{\dagger}+A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}( \nabla)w^{\mathsf{E}}_{\dagger}, D^{\mathsf{M}}(\nabla)w^{\mathsf {M}}_{\dagger}, \bigr)_{\varTheta}+O(\delta) \\ &\quad=\frac{1}{\delta}\lambda_{\dagger}\bigl(\rho U^{\mathsf {M}}_{\dagger},U^{\mathsf{M}}_{\dagger}\bigr)_{\omega} \\ &\quad\quad{}-\bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}(\nabla_{y},i \zeta_{\dagger})U^{\mathsf{M}}_{\dagger}+A^{ME }D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{M}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}\bigr)_{\varTheta}+O(\delta). \end{aligned}$$
(B.25)

The calculation of (B.25) needs an explanation. We made use of the transformation

$$\begin{aligned} &\bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}(\nabla )e^{-\delta|z|}w^{\mathsf{M}}_{\dagger}+ A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}(\nabla)e^{-\delta |z|}w^{\mathsf{E}}_{\dagger},D^{\mathsf{M}}( \nabla)e^{-\delta|z|} w^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega} \\ &\quad= \bigl(e^{-2\delta|z|}\bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}( \nabla)w^{\mathsf{M}}_{\dagger}+A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}( \nabla)w^{\mathsf{E}} _{\dagger}\bigr), D^{\mathsf{M}}( \nabla)w^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega} \\ &\quad\quad{}-\delta \big(e^{-2\delta|z|} A^{\mathsf{M}\mathsf{M}}D^{\mathsf {M}}\bigl(0,0, \mathrm{sign}(z)\bigr)U^{\mathsf{M}}_{\dagger},D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega} \\ &\quad\quad{}-\delta\bigl(e^{-2\delta|z|}A^{\mathsf{M}\mathsf{E}}D^{\mathsf {E}}\bigl(0,0, \mathrm{sign}(z)\bigr)U^{\mathsf{E}}_{\dagger},D^{\mathsf{M}}( \nabla_{y}, i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega} \\ &\quad\quad{}-\delta\big(e^{-2\delta|z|} A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}, D^{\mathsf{M}}\bigl(0,0,\mathrm{sign}(z)\bigr)U^{\mathsf {M}}_{\dagger}\bigr)_{\varOmega} \\ &\quad\quad{}-\delta\bigl(e^{-2\delta|z|}A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{M}}\bigl(0,0,\mathrm{sign}(z)\bigr)U^{\mathsf {M}}_{\dagger}\bigr)_{\varOmega} \\ &\quad\quad{}+\delta^{2} \bigl(e^{-2\delta|z|} A^{\mathsf{M}\mathsf {M}}D^{\mathsf{M}} \bigl(0,0,\mathrm{sign}(z)\bigr)U^{\mathsf{M}}_{\dagger}, D^{\mathsf{M}} \bigl(0,0,\mathrm{sign}(z)\bigr)U^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega} \\ &\quad\quad{}+\delta^{2} \bigl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}\bigl(0,0, \mathrm{sign}(z)\bigr)U^{\mathsf{E}}_{\dagger}, D^{\mathsf{M}}\bigl(0,0, \mathrm{sign}(z)\bigr)U^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega}. \end{aligned}$$
(B.26)

The last term on the right-hand side of (B.26) is of order \(O(\delta)\) whereas, in view of (B.4), the first term equals

$$\begin{aligned} &\delta^{-1} \bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}+ A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger},D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}\bigr)_{\omega}\\ &\quad=\delta^{-1} \bigl(\rho U^{\mathsf{M}}_{\dagger},U^{\mathsf{M}}_{\dagger}\bigr)_{\omega}, \end{aligned}$$

where we have employed the integral identity (20) with \(\zeta=\zeta_{\dagger}, U=U_{\dagger}\), \(\varLambda(\zeta)=\lambda _{\dagger}\) and \(V=(U^{\mathsf{M}}_{\dagger},0)\). The integrands in the second to fifth terms on the right in (B.26) are odd functions in the \(z\)-variable. Therefore, the sum of these integrals vanishes.

Finally, in dealing with the scalar product

$$\bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}(\nabla)w^{\mathsf {M}}_{\delta}+A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}( \nabla)w^{\mathsf{E}}_{\delta}, D^{\mathsf{M}}(\nabla)w^{\mathsf {M}}_{\delta}\bigr)_{\varTheta}, $$

we have replaced \(e^{-\delta|z|}\) by 1 in the compact set \(\varTheta \) providing an error of order \(O(\delta)\).

Our evaluation so far has not taken into account the non-local perturbation of the elasticity problem which is contributed in the last scalar product in (B.24), which depends on the solution \(\widehat{w}^{\mathsf {E}}_{\delta}\) of the problem (B.14). Indeed, by Lemma 7, we recall (46) and write

$$\begin{aligned} \bigl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}} \widehat {w}^{\mathsf{E}}_{\delta}, D^{\mathsf{M}}w^{\mathsf{M}}_{\delta}\bigr)_{\varOmega_{\varTheta}} =& \bigl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}} \mathrm{e}^{-\delta |z|}w^{\mathsf{E}}_{\bullet}, D^{\mathsf{M}}\mathrm{e}^{-\delta|z|}w^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega_{\varTheta}} \\ &{}+\delta\biggl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}\sum _{\pm} \pm\chi_{\pm}\mathrm{e}^{-\delta|z|} \mathrm{e}^{i\zeta_{\dagger}z}U^{\mathsf{E}}_{\bullet}, D^{\mathsf{M}} \mathrm{e}^{-\delta|z|} w^{\mathsf{M}}_{\dagger}\biggr)_{\varOmega _{\varTheta}} \\ &{}+ \bigl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}\widetilde{w}^{\mathsf{E}}_{\delta}, D^{\mathsf{M}}\mathrm{e}^{-\delta|z|}w^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega_{\varTheta}}. \end{aligned}$$
(B.27)

Since \(\|\mathrm{e}^{-\delta|z|}w^{\mathsf{M}}_{\dagger};L^{2}(\varOmega _{\varTheta})\|\leq c\delta^{-1/2}\), the modulo of the last term in (B.27) is less than \(c\delta^{1/2}\), see (B.16). A similar bound occurs for second term, because its modulo can be estimated from above by the expression

$$c\delta\biggl( \int _{-n_{\varTheta}}^{n_{\varTheta}}e^{-2\delta|z|}dz+ \bigg|\sum _{\pm}\pm \int _{-n_{\varTheta}}^{\infty}e^{-2\delta|z|}dz \bigg|+\delta \int _{-\infty}^{\infty}e^{-2\delta|z|}dz \biggr)\leq C\delta. $$

By virtue of the exponential decay of \(w^{\mathsf{E}}_{\bullet}\) and the integral identity (B.5) with \(v^{\mathsf{E}}=w^{\mathsf{E}}_{\bullet}\), the first term on the right-hand side of (B.27) equals

$$\begin{aligned} \bigl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\bullet}, D^{\mathsf{M}}w^{\mathsf{M}}_{\dagger}\bigr)_{\varOmega_{\varTheta}}+O( \delta) =& \bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}w^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega_{\varTheta}} \\ &{}+ \bigl(A^{\mathsf{M}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}w^{\mathsf{E}}_{\dagger}\bigr)_{\varOmega_{\varTheta}}+O( \delta). \end{aligned}$$

By the same arguments, but with \(v^{\mathsf{E}}=\mathrm{e}^{-\delta |z|}w^{\mathsf{E}}_{\dagger}\) as the test function, we show that

$$\begin{aligned} &\bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}w^{\mathsf{E}}_{\dagger}\bigr)_{\varOmega_{\varTheta}} \\&\quad= \lim _{\delta\to+0} \bigl( A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}} w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}\mathrm{e}^{-\delta|z|} w^{\mathsf{E}}_{\dagger}\bigr)_{\varOmega_{\varTheta}} \\ &\quad=\lim_{\delta\to+0} \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}} w^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}} w^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}\mathrm{e}^{-\delta |z|}w^{\mathsf{E}}_{\dagger}\bigr)_{\varOmega_{\varTheta}} \\ &\quad=- \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}w^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}w^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}w^{\mathsf{E}}_{\dagger}\bigr)_{\varTheta} \\ &\quad\quad{}+\lim_{\delta\to+0} \int_{\mathbb{R}} \mathrm{e}^{-\delta|z|} \bigl( A^{\mathsf {E}\mathsf{M}}D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}\bigr)_{\omega}dz \\ &\quad\quad{}-\lim_{\delta\to+0} \int_{\mathbb{R}} \mathrm{e}^{-\delta|z|} \bigl( A^{\mathsf {E}\mathsf{M}}D^{\mathsf{M}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, \\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad D^{\mathsf{E}}\bigl(0,0,\delta\mathrm{sign}(z)\bigr)U^{\mathsf{E}}_{\dagger}\bigr)_{\omega}dz. \end{aligned}$$
(B.28)

The limits vanish due to the following reasons. The scalar product in \(L^{2}(\omega)\) with \(D(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}\) is zero according to the integral identity (26), where \(\zeta=\zeta_{\dagger}\) and \(U^{\mathsf{E}}= V^{\mathsf{E}}=U^{\mathsf{E}}_{\dagger}\). The integral containing the term \(D(0,0,\delta\mathrm{sign}(z))U^{\mathsf{E}}_{\dagger}\) becomes null, since it can be written in the form

$$\begin{aligned} \int_{-\infty}^{0}\delta\mathrm{e}^{-\delta|z|} K(\omega) dz - \int_{0}^{\infty}\delta\mathrm{e}^{-\delta|z|} K(\omega) dz, \end{aligned}$$

where

$$K(\omega)= \bigl( A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}(\nabla_{y},i \zeta_{\dagger})U^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}(0,0,1)U^{\mathsf{E}}_{\dagger}\bigr)_{\omega}$$

is independent on \(z\).

Collecting the calculations above, the denominator can be estimated as

$$\begin{aligned} \bigl\langle w^{\mathsf{M}}_{\delta},w^{\mathsf{M}}_{\delta}\bigr\rangle &= \frac{\lambda_{\dagger}}{\delta} \bigl(\rho U^{\mathsf{M}}_{\dagger}, U^{\mathsf{M}}_{\dagger}\bigr)_{\omega} \\ &\quad{}- \bigl(A^{\mathsf{M}\mathsf{M}}D^{\mathsf{M}}(\nabla_{y},i \zeta_{\dagger})U^{\mathsf{M}}_{\dagger}+ A^{\mathsf{M}\mathsf {E}}D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}, D^{\mathsf{M}}(\nabla_{y},i\zeta_{\dagger}) U^{\mathsf{M}}_{\dagger}\bigr)_{\varTheta}\\ &\quad{}- \bigl(A^{\mathsf{E}\mathsf{M}}D^{\mathsf{M}}(\nabla_{y},i \zeta_{\dagger})U^{\mathsf{M}}_{\dagger}-A^{\mathsf{E}\mathsf {E}}D^{\mathsf{E}}( \nabla_{y},i\zeta_{\dagger}) U^{\mathsf{E}}_{\dagger}, D^{\mathsf{E}}(\nabla_{y},i\zeta_{\dagger})U^{\mathsf{E}}_{\dagger}\bigr)_{\varTheta} \\ &\quad{}+ \bigl(A^{\mathsf{E}\mathsf{E}}D^{\mathsf{E}}(\nabla)w^{\mathsf{E}}_{\bullet}, D^{\mathsf{E}}(\nabla)w^{\mathsf{E}}_{\bullet}\bigr)_{\varOmega _{\varTheta}}. \end{aligned}$$
(B.29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A., Ruotsalainen, K.M. & Silvola, M. Trapped Modes in Piezoelectric and Elastic Waveguides. J Elast 124, 193–223 (2016). https://doi.org/10.1007/s10659-015-9565-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9565-y

Keywords

Mathematics Subject Classification

Navigation