Skip to main content
Log in

Multilocus molecular identification and phylogenetic analysis of Colletotrichum tamarilloi as the causal agent of Tamarillo (Solanum betaceum) anthracnose in the Ecuadorian highlands

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Anthracnose caused by Colletotrichum spp., is one of the most serious diseases affecting tamarillo (Solanum betaceum) production in the Ecuadorian highlands. The objective of this study was to characterise Colletotrichum isolates obtained from tamarillo to clarify its taxonomic and phylogenetic position. Based on phenotypic and morphologic characterisation, the isolates of this study were consistently grouped within the Colletotrichum acutatum complex. Multilocus molecular phylogenetic analysis based on combined sequences of actin (ACT), β-tubulin (TUB2), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) sequences using Bayesian probabilities, indicated that 16 of 20 isolates from Imbabura, Cotopaxi, Tungurahua, Bolivar, Chimborazo, Azuay and Loja provinces, belonged to C. tamarilloi. This study represents the first reported case of anthracnose of S. betaceum caused by C. tamarilloi in the Ecuadorian highlands. Interestingly, pathogenicity tests and multilocus molecular analysis revealed a new infraspecific and more aggressive species formed by four isolates obtained from the Pichincha province. These findings probably provided interesting information related to mutant isolates and a possible description of a new pathogenic species affecting tamarillo fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afanador-Kafuri, L., Minz, D., Maymon, M., & Freeman, S. (2003). Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus. Phytopathology, 93, 579–587.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, J. A., O’Connell, R. J., Pring, R. J., & Nash, C. (1992). Infection strategies of Colletotrichum species. In In: Colletotrichum: biology, pathology and control. Wallingford, Gran Bretaña: CAB International.

    Google Scholar 

  • Blank, R. H., Dance, H. M., Hampton, R. E., Olson, M. H., & Holland, P. T. (1987). Tamarillo (Cyphomandra betacea): effect of field-applied fungicides and post-harvest fungicide dips on storage rots of fruit. New Zealand Journal of Experimental Agriculture, 15, 191–198.

    Article  CAS  Google Scholar 

  • Brown, A. E., Sreenivasaprasad, S., & Timmer, L. W. (1996). Molecular characterization of slow-growing orange and key lime anthracnose strains of Colletotrichum from Citrus as C. acutatum. Phytopathology, 86, 523–527.

    Article  CAS  Google Scholar 

  • Buddie, A., Martínez-Culebras, P., Bridge, P., García, M., Querol, A., Cannon, P., & Monte, E. (1999). Molecular characterization of Colletotrichum strains derived from strawberry. Mycological Research, 103, 385–394.

    Article  CAS  Google Scholar 

  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.

    Article  CAS  Google Scholar 

  • Castellanos, C., & Mosquera, G. (2011). Producción de micelio en medio líquido para extracción de ADN. Guías Prácticas de Laboratorio para el Manejo de Patógenos del Frijol. Costa Rica: CIAT.

    Google Scholar 

  • Centro de Información e Inteligencia Comercial (CICO-CORPEI). (2009). Perfiles de producto, perfil de tomate de árbol. Ecuador-Ibarra, pp. 23.

  • Choi, Y. W., Hyde, K. D., & Ho, W. H. (1999). Single spore isolation of fungi. Fungal Diversity, 3, 29–38.

    Google Scholar 

  • Chull, Y., Jung, Y., Woo, K., Jung, S., & Woo, S. (2008). Ultrastructures of Colletotrichum orbiculare in the leaves of cucumber plants expressing induced systemic resistance mediated by Glomus intraradices BEG110. Mycobiology, 36, 236–241.

    Article  Google Scholar 

  • Chung, W. H., Ishii, H., Nishimura, K., Fukaya, M., Yano, K., & Kajitani, Y. (2006). Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Disease, 90, 506–512.

    Article  CAS  Google Scholar 

  • Crouch, J. A., Clarke, B. B., & Hillman, B. I. (2009). What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia, 101, 648–656.

    Article  PubMed  Google Scholar 

  • Damm, U., Cannon, P. F., Woudenberg, J., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, M., Schardl, C. L., Nuckles, E. M., & Vaillancourt, L. J. (2005). Using mating-type gene sequences for improved phylogenetic resolution of Colletotrichum species complexes. Mycologia, 3, 641–658.

    Article  Google Scholar 

  • Falconí, C. E., Visser, R. G., & Van Heusden, A. W. (2013). Phenotypic, molecular, and pathological characterization of Colletotrichum acutatum associated with Andean lupine and tamarillo in the Ecuadorian Andes. Plant Disease, 97, 819–827.

    Article  Google Scholar 

  • Freeman, S., & Rodríguez, R. J. (1995). Differentiation of Colletotrichum species responsible for anthracnose of strawberry by arbitrarily primed PCR. Mycological Research, 99, 501–504.

    Article  CAS  Google Scholar 

  • Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82, 596–605.

    Article  Google Scholar 

  • Guerber, J., Liu, B., Correll, J., & Johnston, P. (2003). Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia, 95, 872–895.

    Article  CAS  PubMed  Google Scholar 

  • Gunnell, P. S., & Gubler, W. D. (1992). Taxonomy and morphology of Colletotrichum species pathogenic to strawberry. Mycologia, 84, 157–165.

    Article  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., & Drummond, A. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kongtragoul, P., Nalumpang, S., Miyamoto, Y., Izumi, Y., & Akimitsu, K. (2011). Mutation at codon 198 of Tub2 gene for Carbendazim resistance in Colletotrichum gloeosporioides causing mango anthracnose in Thailand. Journal of Plant Protection Research, 57, 377–383.

    Google Scholar 

  • León, J., Viteri, P., & Cevallos, G. (2004). Manual del Cultivo de Tomate de Árbol (Solanum betaceum Cav.). Ecuador-Quito, INIAP. Manual No. 61.

  • Michaelsen, A., Pinzari, F., Barbabietola, N., & Piñar, G. (2013). Monitoring the effects of different conservation treatments on paper-infecting fungi. International Biodeterioration & Biodegradation, 84, 333–341.

    Article  CAS  Google Scholar 

  • Nirenberg, H. I., Feiler, U., & Hagedorn, G. (2002). Description of Colletotrichum lupine comb.nov.in modern terms. Mycologia, 94, 307–320.

    Article  PubMed  Google Scholar 

  • O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.

    Article  PubMed  Google Scholar 

  • Photita, W., Taylor, P. W., Ford, R., Hyde, K. D., & Lumyong, S. (2005). Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Diversity, 18, 117–133.

    Google Scholar 

  • Prohens, J., & Nuez, F. (2001). The Tamarillo (Cyphomandra betacea): a review of a promising small fruit crop. Small Fruits Review, 1, 43–68.

    Article  Google Scholar 

  • Rambaut, A., & Drummond, A. (2010). TreeAnnotator version 1.6.1 [computer program] http://beast.bio.ed.ac.uk.

  • Ronquist, F., & Huelsenbeck, J. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Santillán, F. (2001). Manual del cultivo sustentable de tomate de árbol (p. 18). Ecuador: Universidad de Cuenca.

    Google Scholar 

  • Santos, S., Tozze, H., Corrêa, D., Quintão, G., & Massola, N. (2013). Etiology and pathogenicity of two different isolates of Colletotrichum spp. obtained from physic nut seeds. Journal of Seed Science, 35, 139–146.

    Article  Google Scholar 

  • Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Shagai-Maroof, M., Soliman, K., Jorgensen, R., & Allard, R. (1984). Ribosomal DNA spacer-length polymorphism in barley: mendelian inheritance, chromosomal locations and population dynamics. Proceedings of the National Academy of Sciences, 81, 8014–8018.

    Article  Google Scholar 

  • Simmonds, J. H. (1965). A study of the species of Colletotrichum causing ripe fruit rots in Queensland. Queensland Journal of Agricultural and Animal Science, 22, 437–459.

    Google Scholar 

  • Sreenivasaprasad, S., & Talhinhas, P. (2005). Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Molecular Plant Pathology, 6, 361–378.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2013). MEGA6.0: molecular evolutionary genetics analysis (MEGA) software version 6.06. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Than, P. P., Shivas, R. G., Jeewon, R., Pongsupasamit, S., Marney, T. S., Taylor, P. W., & Hyde, K. D. (2008). Epitypification and phylogeny of Colletotrichum acutatum J. H. Simmonds. Fungal Diversity, 28, 97–108.

    Google Scholar 

  • Weir, B., Johnston, P., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarden, O., & Katan, T. (1993). Mutations leading to substitutions at amino acid 198 and 200 of beta-tubulin that correlate with benomyl resistant phenotypes of field strains of Botrytis cinerea. Phytopathology, 83, 1478–1483.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research received collaboration of the following institutions: AGROCALIDAD-Tumbaco and IZC (International Zoonosis Center) situated in the Central University of Ecuador. We thank Dr. Lydia Rivera for her valuable contributions (University of Puerto Rico-Mayagüez campus) reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge D. Caicedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caicedo, J.D., Lalangui, K.P., Pozo, A.N. et al. Multilocus molecular identification and phylogenetic analysis of Colletotrichum tamarilloi as the causal agent of Tamarillo (Solanum betaceum) anthracnose in the Ecuadorian highlands. Eur J Plant Pathol 148, 983–996 (2017). https://doi.org/10.1007/s10658-017-1155-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1155-3

Keywords

Navigation