Skip to main content
Log in

Fast and sensitive on-site isothermal assay (LAMP) for diagnosis and detection of three fruit tree phytoplasmas

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Over the years, real-time PCR outflanked endpoint PCR in phytopathogen diagnostics, mainly because of the increase in sensitivity and timesaving aspects of the technique. However, a time consuming 16S rRNA-based nested PCR method is still the gold standard for phytoplasma diagnosis. This is also the case for phytoplasma detection in Malus, Pyrus and Prunus, the three main host plants of apple proliferation (AP), pear decline (PD) and European stone fruit yellows (ESFY) phytoplasma, respectively. The last decade, loop-mediated isothermal amplification (LAMP) (Notomi et al. 2000) is gaining a lot in significance and is also for phytoplasmas expected to become a widely used reliable diagnostic tool. High specificity and sensitivity which also requires a less stringent need for DNA purification, and the short analysis time and the limited equipment requirements makes the LAMP method a fast and affordable alternative with great point-of-care diagnostic potential. In this paper, we present a LAMP primer set for the ribosomal group 16SrX, containing the important fruit tree phytoplasmas AP, PD and ESFY. The primers were developed and validated for fast and sensitive detection and general use for diagnosis. We foresee that the LAMP technique will also have its application in on-site diagnosis of the fruit tree phytoplasmas during inspections and surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Ghani, R., Al-Mekhlafi, A. M., & Karanis, P. (2012). Loop-mediated isothermal amplification (LAMP) for malarial parasites of humans: would it come to clinical reality as a point-of-care test? Acta Tropica, 122(3), 233–240.

    Article  CAS  PubMed  Google Scholar 

  • ANSES Détection des phytoplasmes responsables de l’enroulement chlorotique de l’abricotier, de la prolifération du pommier et du dépérissement du poirier. (2013). Méthode officielle d’analyse MOA 004 version 1b 18p https://www.anses.fr/sites/default/files/documents/MOA004version%201b%20phytoplames%20ligneux.pdf. Accessed 3 Sept 2013.

  • Bekele, B., Hodgetts, J., Tomlinson, J., Boonham, N., Nikolic, P., Swarbrick, P., & Dickinson, M. (2011). Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathology, 60(2), 345–355.

    Article  CAS  Google Scholar 

  • Boonham N., & the PORT CHECK consortium. 2007. Development of generic ‘on site’ molecular diagnostics for EU quarantine pests and pathogens; FP6-Policies, ref. 502348, final activity report. http://cordis.europa.eu/publication/rcn/12617_en.html.

  • Chander, Y., Koelbl, J., Puckett, J., Moser, M. J., Klingele, A. J., Liles, M. R., Carrias, A., Mead, D. A., & Schoenfeld, T. W. (2014). A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Frontiers in Microbiology, 5, Article Number 395.

  • Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions, 17(11), 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  • De Jonghe, K., Tahzima, R., Scheerlinck, D., Baeyen, S., & Maes, M. (2009). Utilization of FTA (R) cards combined with one-step real-time PCR for rapid detection of quarantine viruses and phytoplasmas. Proceedings, 4th International qPCR conference, Freising, Germany.

  • Delic, D. (2012). Polymerase Chain Reaction for Phytoplasmas Detection. In P. Hernandez-Rodriguez (Ed.), Polymerase Chain Reaction, InTech (pp. 104–118). http://www.intechopen.com/books/polymerase-chain-reaction. Accessed 15 Oct 2014.

  • Dong, H. J., Cho, A. R., Hahn, T. W., & Cho, S. (2014). Development of a loop-mediated isothermal amplification assay for rapid, sensitive detection of Campylobacter jejuni in cattle farm samples. Journal of Food Protection, 77(9), 1593–1598.

    Article  CAS  PubMed  Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  • Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterisation of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19), 7843–7853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firrao, G., Andersen, M., Bertaccini, A., Boudon, E., Bove, J. M., Daire, X., Davis, R. E., Fletcher, J., Garnier, M., Gibb, K. S., Gundersen-Rindal, D. E., Harrison, N., Hiruki, C., Kirkpatrick, B. C., Jones, P., Kuske, C. R., Lee, I. M., Liefting, L., Marcone, C., Namba, S., Schneider, B., Sears, B. B., Seemuller, E., Smart, C. D., Streten, C., & Wang, K. (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1243–1255.

    Article  CAS  Google Scholar 

  • Gandelman, O., Jackson, R., Kiddle, G., & Tisi, L. (2011). Loop-mediated amplification accelerated by stem primers. International Journal of Molecular Sciences, 12, 9108–9124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto, M., Honda, E., Ogura, A., Nomoto, A., & Hanaki, K. I. (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques, 46(3), 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Hasiow-Jaroszewska, B., & Borodynko, N. (2011). Detection of Pepino mosaic virus isolates from tomato by one-step reverse transcription loop-mediated isothermal amplification. Archives of Virology, 158(10), 2153–2156.

    Article  Google Scholar 

  • Hodgetts, J., Tomlinson, J. A., Boonham, N., Gonzalez-Martin, I., Nikolic, P., Swarbrick, P., Yankey, E. N., & Dickinson, M. (2011). Development of rapid in-field loop-mediated isothermal amplification (LAMP) assays for phytoplasmas. Bulletin of Insectology, 64, S41–S42.

    Google Scholar 

  • Ihira, M., Yoshikawa, T., Enomoto, Y., Akimoto, S., Ohashi, M., Suga, S., Nishimura, N., Ozaki, T., Nishiyama, Y., Notomi, T., Ohta, Y., & Asano, Y. (2004). Rapid diagnosis of human herpesvirus 6 infection by a novel DNA amplification method, loop-mediated isothermal amplification. Journal of Clinical Microbiology, 42(1), 140–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto, T., Sonobe, T., & Hayashi, K. (2003). Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. Journal of Clinical Microbiology, 41(6), 2616–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarausch, B., & Jarausch, W. (2010). Psyllid vectors and their control. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: genomes, plant hosts and vectors (pp. 250–271). UK: CABI press.

    Google Scholar 

  • Jung, J. H., Park, B. H., Oh, S. J., Choi, G., & Seo, T. S. (2015). Integration of reverse transcriptase loop-mediated isothermal amplification with an immunochromatographic strip on a centrifugal micro device for influenza A virus identification. Lab on a Chip, 15(3), 718–725.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, H., Kawana, T., Fukushima, E., & Suzutani, T. (2007). Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70(3), 499–501.

    Article  CAS  PubMed  Google Scholar 

  • Kogovsek, P., Hodgetts, J., Hall, J., Prezelj, N., Nikolic, P., Mehle, N., Lenarcic, R., Rotter, A., Dickinson, M., Boonham, N., Dermastia, M., & Ravnikar, M. (2015). LAMP assay and rapid sample preparation method for on-site detection of flavescence doree phytoplasma in grapevine. Plant Pathology, 64(2), 286–296.

    Article  CAS  PubMed  Google Scholar 

  • Lešnik, M., Raviknar, M., Brzin, J., Mehle, N., Petrovič, N., Tojnko, S., & Lešnik, M. (2007). Expression of disease symptoms on different apple cultivars infected with apple proliferation phytoplasma. Hop Bulletin, 14, 43–53.

    Google Scholar 

  • Liang, X., Chigerweb, M., Hietalaa, S. K., & Crossley, B. M. (2014). Evaluation of fast technology analysis (FTA) Cards as an improved method for specimen collection and shipment targeting viruses associated with Bovine respiratory disease complex. Journal of Virological Methods, 202, 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Maejima, K., Oshima, K., & Namba, S. (2014). Exploring the phytoplasmas, plant pathogenic bacteria. Journal of General Plant Pathology, 80(3), 210–221.

    Article  CAS  Google Scholar 

  • Marcone, C., Gibb, K. S., Streten, C., & Schneider, B. (2004). ‘Candidatus Phytoplasma spartii’, ‘Candidatus Phytoplasma rhamni’ and ‘Candidatus Phytoplasma allocasuarinae’, respectively associated with spartium witches’-broom, buckthorn witches’-broom and allocasuarina yellows diseases. International Journal of Systematic and Evolutionary Microbiology, 54, 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  • Marcone, C., Jarausch, B., & Jarausch, W. (2010). ‘Candidatus Phytoplasma prunorum’, the causal agent of European stone fruit yellows: an overview. Journal of Plant Pathology, 92(1), 19–34.

    CAS  Google Scholar 

  • Martini, M., Ermacora, P., Magris, G., Ferrini, F., & Loi, N. (2011). Symptom expression and ‘Candidatus Phytoplasma prunorum’ concentration in different Prunus species. Bulletin of Insectology, 64, S171–S172.

    Google Scholar 

  • Mori, Y., & Notomi, T. (2009). Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of Infection and Chemotherapy, 15(2), 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Niessen, L., Luo, J., Denschlag, C., & Vogel, R. F. (2013). The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants. Food Microbiology, 36(2), 191–206.

    Article  CAS  PubMed  Google Scholar 

  • Njiru, Z. K. (2012). Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS Neglected Tropical Diseases, 6(6), e1572. 1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanebe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, e63i–63vii.

    Article  Google Scholar 

  • Obura, E., Masiga, D., Wachira, F., Gurja, B., & Khan, Z. R. (2011). Detection of phytoplasma by loop-mediated isothermal amplification of DNA (LAMP). Journal of Microbiological Methods, 84(2), 312–316.

    Article  CAS  PubMed  Google Scholar 

  • Ravindran, A., Levy, J., Pierson, E., & Gross, D. C. (2012). Development of a loop-mediated isothermal amplification procedure as a sensitive and rapid method for detection of ‘Candidatus Liberibacter solanacearum’ in potatoes and psyllids. Phytopathology, 102(9), 899–907.

    Article  CAS  PubMed  Google Scholar 

  • Seemüller, E., & Schneider, B. (2007). Differences in virulence and genomic features of strains of ‘Candidatus Phytoplasma mali’, the apple proliferation agent. Phytopathology, 97(8), 964–970.

    Article  PubMed  Google Scholar 

  • Seemüller, E., Schaper, U., & Zimbelmann, F. (1984). Seasonal variation in the colonization patterns of mycoplasma-like organisms associated with apple proliferation and pear decline. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 91(4), 371–382.

    Google Scholar 

  • Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., & Göschl, M. (1998). Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology, 80(1), 3–26.

  • Shirato, K., Yano, T., Senba, S., Akachi, S., Kobayashi, T., Nishinaka, T., Notomi, T., & Matsuyama, S. (2014). Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virology Journal, 11, 139 (11p).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugawara, K., Himeno, M., Keima, T., Kitazawa, Y., Maejima, K., Oshima, K., & Namba, S. (2012). Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene. Journal of General Plant Pathology, 78(6), 389–397.

    Article  CAS  Google Scholar 

  • The EUPHRESCO FruitPhytoInterlab group, Mehle, N., Pasquini, G., Reisenzein, H., Steyer, S., De Jonghe, K., Avramov, Z., Schaerer, S., Schlesingerova, G., Orsagova, H., Schneider, B., Nicolaisen, M., Bech, J., Batlle, A., Lavina, A., Font, I., Ferretti, L., Calvi, M., Bertaccini, A., Blystad, D.-R., Klemsdal, S., Kox, L., Teunisse, J., van de Vossenberg, B., Hennig, E., Moszczynska, J., Nascimento, E., de Sousa, A., Andrade, E., Horvath, L., Hudecoba, M., Dermastia, M., Ustun, N., Kaya, A., Fox, A., Skelton, A., & Torres, E. (2011). European interlaboratory comparison and validation of detection methods for ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma prunorum’ and ‘Candidatus Phytoplasma pyri’: preliminary results. Bulletin of Insectology, LXIV, S281–S284.

    Google Scholar 

  • Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877–882.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, J. A., Boonham, N., & Dickinson, M. (2010). Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathology, 59(3), 465–471.

    Article  CAS  Google Scholar 

  • Torres, E., Laviňa, A., Sabaté, J., Bech, J., & Batlle, A. (2010). Evaluation of susceptibility of pear and plum varieties and rootstocks to ‘Ca. P. pyri’ and ‘Ca. P. prunorum’ using Real-Time PCR. Julius-Kühn-Archiv, 427, 395–398.

    Google Scholar 

  • Yeh, H. Y., Shoemaker, C. A., & Klesius, P. H. (2005). Evaluation of a loop-mediated isothermal amplification method for rapid detection of channel catfish Ictalurus punctatus important bacterial pathogen Edwardsiella ictaluri. Journal of Microbiological Methods, 63(1), 36–44.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Wei, W., Davis, R., & Lee, I. (2010). Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In P. G. Weintraub & P. Jones (Eds.), Phytoplasma genomes, plant hosts and vectors (pp. 64–92). Wallingford: CABI.

    Google Scholar 

Download references

Acknowledgments

We wish to thank Vision4Care, Zottegem, Belgium for the use of the Genie®III instrument during the validation experiments. The authors are also grateful to Bernd Schneider (JKI, Germany), Santiago Schaerer (ACW, Switzerland) and Helga Reisenzein (AGES, Austria) of the Euphresco ERAnet APOPHYT project group for the provision of the ESFY isolates included in this study. This study was supported by the Belgian Plant Protection Service (FASFC and FAVV). We wish to thank Barbara Van Steendam for her help with the ESFY validation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. De Jonghe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Jonghe, K., De Roo, I. & Maes, M. Fast and sensitive on-site isothermal assay (LAMP) for diagnosis and detection of three fruit tree phytoplasmas. Eur J Plant Pathol 147, 749–759 (2017). https://doi.org/10.1007/s10658-016-1039-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1039-y

Keywords

Navigation