Skip to main content
Log in

Identification of Colletotrichum species associated with postbloom fruit drop in Brazil through GAPDH sequencing analysis and multiplex PCR

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The genus Colletotrichum comprises a group of important fungal pathogens that can infect a wide variety of host plants worldwide. Postbloom fruit drop (PFD) of citrus plants is responsible for extensive crop losses annually, and is particularly detrimental to Brazilian citrus production. The disease was first associated with Colletotrichum gloeosporioides and subsequently linked to Colletotrichum acutatum. However, a new species, C. abscissum, was described in 2015 as the causative agent of PFD in Brazil. The species description used a small number of strains and the distribution of the pathogen remains unclear. The proportion of PFD caused by this species is also unclear, because both C. abscissum and C. gloeosporioides are associated with the disease as well. By analyzing sequences of the GAPDH intron region, we identified 227 isolates of Colletotrichum associated with PFD in orchards of São Paulo state, 172 isolates were identified as C. abscissum and 55 as C. gloeosporioides. Morphological characters and multilocus sequencing confirmed species C. abscissum was the only species in the C. acutatum complex associated with PFD disease in Brazil. Although described as sensitive to benzimidazole-based fungicides, 20% of C. gloeosporioides isolates were found in regions with high use of this class of fungicide. Evaluated strains exhibited resistance to this fungicide in vitro. Because previously described primers differentiate between C. acutatum and C. gloeosporioides complexes, but not the particular species associated with PFD, we proposed and validated primers for a single multiplex PCR that specifically distinguished the C. abscissum and C. gloeosporioides sensu stricto.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afanador-Kafuri, L., Minz, D., Maymon, M., & Freeman, S. (2003). Characterization of Colletotrichum isolates from tamarillo, passiflora and mango in Colombia and identification of a unique species from the genus. Phytopathology, 93, 579–587.

    Article  CAS  PubMed  Google Scholar 

  • Agostini, J. P., Timmer, L. W., & Mitchell, D. J. (1992). Morphological and pathological characteristics of strains of Colletotrichum gloeosporioides from citrus. Phytopathology, 82, 1377–1382.

    Article  Google Scholar 

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroncelli, R., Zapparata, A., Sarocco, S., Sukno, S. A., Lane, C. R., Thon, M. R., et al. (2015). Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different colletotrichum species. PLoS One, 10(6), e0129140. doi:10.1371/journal.pone.0129140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bragança, C. A. D., Damm, U., Baroncelli, R., Massola Júnior, N. S., & Crous, P. (2016). Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biology, 120(4), 547–561.

    Article  PubMed  Google Scholar 

  • Brown, A. E., Sreenivasaprasad, S., & Timmer, L. W. (1996). Molecular characterization of slow-growing orange and key lime anthracnose strains of Colletotrichum from citrus as C. acutatum. Phytopathology, 86, 523–527.

    Article  CAS  Google Scholar 

  • Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556.

  • Chen, S., Cao, Y., Li, T., & Wu, X. (2015). Simultaneous detection of three wheat pathogenic fungal species by multiplex PCR. Phytoparasitica, 43, 449–460.

    Article  CAS  Google Scholar 

  • Cho, H. J., Hong, S. W., Kim, H., & Kwak, Y. (2016). Development of a multiplex PCR method to detect fungal pathogens for quarantine on exported cacti. Plant Pathology Journal, 32(1), 53–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous, P. W., Gams, W., Stalpers, J. A., Robert, V., and Stegehuis, G. (2004). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology, 50, 19–22.

  • Damm, U., Cannon, P. F., Woudenberg, J. H. C., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Goes, A., Garrido, R. B. O., Reis, R. F., Baldassari, R. B., & Soares, M. A. (2008). Evaluation of fungicide applications to sweet orange at different flowering stages for control of postbloom fruit drop caused by Colletotrichum acutatum. Crop Protection, 27, 71–76.

    Article  Google Scholar 

  • de Hoog, G. S., & Gerrits van den Ende, A. H. G. (1998). Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses, 41, 183–189.

  • de Menezes, H. D., Rodrigues, G. B., Teixeira, S. P., Massola, N. S., Bachmann, M. W., & Braga, G. U. L. (2014). In vitro photodynamic inactivation of plant-pathogenic fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with novel PhenoThiazinium photosensitizers. Applied and Environmental Microbiology, 80(5), 1623–1632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagan, H. J. (1979). Postbloom fruit drop, a new disease of citrus associated with a form of Colletotrichum gloeosporioides. Annals of Applied Biology, 91, 13–20.

    Article  Google Scholar 

  • Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82, 596–605.

    Article  Google Scholar 

  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

  • Guerber, J. C., Liu, B., Correll, J. C., & Johnston, P. R. (2003). Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia, 95, 872–895.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Huang, F., Chen, G. Q., Hou, X., Fu, Y. S., Cai, L., Hyde, K. D., et al. (2013). Colletotrichum species associated with cultivated citrus in China. Fungal Diversity, 61, 61–74.

    Article  Google Scholar 

  • Johnston, P. R., & Jones, D. (1997). Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia, 89(3), 420–430.

    Article  CAS  Google Scholar 

  • Johnston, P. R., Pennycook, S. R., & Manning, M. A. (2005). Taxonomy of fruit-rotting fungal pathogens: what’s really out there? New Zealand Plant Protection, 58, 42–46.

    CAS  Google Scholar 

  • Kupper, K. C., Gimenes-Fernandes, N., & de Goes, A. (2003). Controle biológico de Colletotrichum acutatum, agente causal da queda prematura dos frutos cítricos. Fitopatologia Brasileira, 28, 251–257.

    Article  Google Scholar 

  • Lahey, K. A., Yuan, R., Burns, J. K., Ueng, P. P., Timmer, L. W., & Chung, K. R. (2004). Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. Molecular Plant-Microbe Interactions, 17, 1394–1401.

    Article  CAS  PubMed  Google Scholar 

  • Lardner, R., Johnston, P. R., Plummer, K. M., & Pearson, M. N. (1999). Morphological and molecular analysis of Colletotrichum acutatum sensu lato. Mycological Research, 103, 275–285.

    Article  Google Scholar 

  • Lima, W. G., Spósito, M. B., Amorim, L., Gonçalves, F. P., & Filho, P. A. M. (2011). Colletotrichum gloeosporioides, a new causal agent of citrus post-bloom fruit drop. European Journal of Plant Pathology, 131, 157–165.

    Article  Google Scholar 

  • Lima, J. S., Figueiredo, J. G., Gomes, R. G., Stringari, D., Goulin, E. H., Adamoski, D., et al. (2012). Genetic diversity of Colletotrichum spp. An endophytic fungi in a medicinal plant, Brazilian pepper tree. ISRN Microbiology. doi:10.5402/2012/215716.

    PubMed  PubMed Central  Google Scholar 

  • MacKenzie, S. J., Legard, D. E., Timmer, L. W., Chandler, C. K., & Peres, N. A. (2006). Resistance of strawberry cultivars to crown rot caused by Colletotrichum gloeosporioides isolates from Florida is nonspecific. Plant Disease, 90, 1091–1097.

    Article  Google Scholar 

  • MacKenzie, S. J., Peres, N. A., Barquero, M. P., Arauz, L. F., & Timmer, L. W. (2009). Host range and genetic relatedness of Colletotrichum acutatum isolates from fruit crops and leatherleaf fern in Florida. Phytopathology, 99, 620–631.

    Article  CAS  PubMed  Google Scholar 

  • Marques, J. P. R., Amorim, L., Silva-Junior, G. J., Spósito, M. B., & Appezzato-da Gloria, B. (2014). Structural and biochemical characteristics of citrus flowers associated with defense against a fungal pathogen. AoB Plants. doi:10.1093/aobpla/plu090.

    Google Scholar 

  • McGovern, R. J., Seijo, T. E., Hendricks, K., & Roberts, P. D. (2012). New report of Colletotrichum gloeosporioides causing postbloom fruit drop on citrus in Bermuda. Canadian Journal of Plant Pathology, 34(2), 187–194.

    Article  Google Scholar 

  • O’Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., et al. (2012). Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics. doi:10.1038/ng.2372.

    Google Scholar 

  • Peres, N. A. R., Souza, N. L., Peever, T. L., & Timmer, L. W. (2004). Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease, 88, 125–130.

    Article  CAS  Google Scholar 

  • Peres, N. A., MacKenzie, S. J., Peever, T. L., & Timmer, L. W. (2008). Postbloom fruit drop of citrus and Key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Phytopathology, 98, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Petrini, O., Sieber, T. N., Toti, L., & Viret, O. (1992). Ecology, metabolite production and substrate utilization in endophytic fungi. Natural Toxins, 1, 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Pinho, D. B., Lopes, U. P., Pereira, O. L., Silveira, A. L., & de Goes, A. (2015). Colletotrichum abscissum Pinho & O.L. Pereira, sp. nov. Persoonia, 34, 236–237.

    Google Scholar 

  • Potrykus, M., Sledz, W., Golanowska, M., Slawiak, M., Binek, A., Motyka, A., et al. (2014). Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Annals of Applied Biology, 165, 474–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raeder, U., & Broda, P. (1985). Rapid Preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1, 17–20.

    Article  CAS  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreenivasaprasad, S., & Talhinhas, P. (2005). Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Molecular Plant Pathology, 6(4), 361–378.

    Article  CAS  PubMed  Google Scholar 

  • Talhilhas, P., Baroncelli, R., & Le Floch, G. (2016). Anthracnose of lupins caused by Colletotrichum lupini: a recent disease and a successful worldwide pathogen. Journal of Plant Pathology, 98(1), 5–14.

    Google Scholar 

  • Talhinhas, P., Gonçalves, E., Sreenivasaprasad, S., & Oliveira, H. (2015). Virulence diversity of anthracnose pathogens (Colletotrichum acutatum and C. gloeosporioides species complexes) on eight olive cultivars commonly grown in Portugal. European Journal of Plant Pathology, 142, 73–83. doi:10.1007/s10658-014-0590-7.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton, M. D., Rikkerink, E. H. A., Solon, S. L., & Crowhurst, R. N. (1992). Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene, 122, 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  • Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). New York: Academic Press.

  • Whitelaw-Weckert, M. A., Curtin, S. J., Huang, R., Steel, C. C., Blanchard, C. L., & Roffey, P. E. (2007). Phylogenetic relationships and pathogenicity of Colletotrichum acutatum isolates from grape in subtropical Australia. Plant Pathology, 56, 448–463.

    Article  CAS  Google Scholar 

  • Woudenberg, J. H. C., Aveskamp, M. M., de Gruyter, J., Spiers, A. G., & Crous, P. W. (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia, 22, 56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chirlei Glienke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.O., Savi, D.C., Gomes, F.B. et al. Identification of Colletotrichum species associated with postbloom fruit drop in Brazil through GAPDH sequencing analysis and multiplex PCR. Eur J Plant Pathol 147, 731–748 (2017). https://doi.org/10.1007/s10658-016-1038-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1038-z

Keywords

Navigation