Skip to main content
Log in

Diversity and identification of Neofabraea species causing bull’s eye rot in the Czech Republic

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Four Neofabraea species are responsible for bull’s eye rot, which is an important postharvest disease of apples and pears. The species diversity of its causal agents in Europe has not been thoroughly explored using molecular genetic methods. Eighty-one Neofabraea isolates were obtained mostly from apples with bull’s eye rot symptoms in the Czech Republic over a two year period. The isolates were identified using PCR fingerprinting and DNA sequencing of the ITS rDNA region, the mitochondrial SSU rDNA and the β-tubulin and EF1α genes. The most common species was N. alba (89 %), followed by N. perennans (5 %) and N. kienholzii (5 %). This is the third published record of N. kienholzii in Europe. The species identity of the isolate CPPF507, which was placed close to N. kienholzii, remains unclear. EF1α was shown to be a suitable marker for the identification of species of the genus Neofabraea and was comparable to the previously used β-tubulin gene. Furthermore, the aggressiveness of individual species was compared and species distribution across Europe was summarized. N. perennans and isolate CPPF507 proved to be the most aggressive, whereas the least aggressive was N. kienholzii. Two N. alba isolates isolated from symptomless apple fruits and leaves were pathogenic to apples in the infection tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atlas, R. M. (2004). Handbook of microbiological media. Washington, D.C.: CRC press.

    Book  Google Scholar 

  • Bakys, R., Vasaitis, R., Barklund, P., Thomsen, I. M., & Stenlid, J. (2009). Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. European Journal of Forest Research, 128, 51–60.

    Article  Google Scholar 

  • Bompeix, G. (1978). The comparative development of Pezicula alba and Pezicula malicorticis on apples in vitro air and controlled atmosphere. Phytopathologische Zeitschrift, 91, 97–109.

    Article  Google Scholar 

  • Bompeix, G., & Bondoux, P. (1974). Etude experimentale du pouvoir pathogene du Pezicula alba Guthrie et du Pezicula malicorticis (Jack.) Nann. sur rameaux du pommier. [Experimental study of pathogenicity of Pezicula alba Guthrie and Pezicula malicorticis (Jack.) Nann. on apple-tree branches.]. Proceedings of the Annales de Phytopathologie, 6, 1–11.

    Google Scholar 

  • Børve, J. (2012). Work on storage diseases on apple by Bioforsk. In. Workshop at Njøs, Graminor in Norway, 20–21 November 2012.

  • Børve, J., Røen, D., & Stensvand, A. (2013). Harvest time influences incidence of storage diseases and fruit quality in organically grown ‘Aroma’ apples. European Journal of Horticultural Science, 78, 232–238.

    Google Scholar 

  • Cunnington, J. H. (2004). Three Neofabraea species on pome fruit in Australia. Australasian Plant Pathology, 33, 453–454.

    Article  Google Scholar 

  • de Jong, S. N., Levesque, C. A., Verkley, G. J. M., Abeln, E. C. A., Rahe, J. E., & Braun, P. G. (2001). Phylogenetic relationships among Neofabraea species causing tree cankers and bull’s-eye rot of apple based on DNA sequencing of ITS nuclear rDNA, mitochondrial rDNA, and the beta-tubulin gene. Mycological Research, 105, 658–669.

    Article  Google Scholar 

  • Dimitrova, E., & Gyosheva, M. (2010). Checklist of Bulgarian Helotiales. Phytologia Balcanica, 16, 3–21.

    Google Scholar 

  • Dugan, F. M., Grove, G. G., & Rogers, J. D. (1993a). Comparative studies of Cryptosporiopsis curvispora and C. perennans. I. Morphology and pathogenic behavior. Mycologia, 85, 551–564.

    Article  Google Scholar 

  • Dugan, F. M., Roberts, R. G., & Grove, G. G. (1993b). Comparative studies of Cryptosporiopsis curvispora and C. perennans. II. Cytology and vegetative compatibility. Mycologia, 85, 565–573.

    Article  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Gariepy, T. D., Levesque, C. A., de Jong, S. N., & Rahe, J. E. (2003). Species specific identification of the Neofabraea pathogen complex associated with pome fruits using PCR and multiplex DNA amplification. Mycological Research, 107, 528–536.

    Article  CAS  PubMed  Google Scholar 

  • Grove, G. G. (1990). Anthracnose and perennial canker. In A. L. Jones & H. S. Aldwinckle (Eds.), Compendium of apple and pear diseases (pp. 36–38). St. Paul: APS Press.

    Google Scholar 

  • Guthrie, E. (1959). The occurrence of Pezicula alba sp. nov. and P. malicorticis, the perfect states of Gloeosporium album and G. perennans, in England. Transactions of the British Mycological Society, 42, 502–506.

    Article  Google Scholar 

  • Henriquez, J. L., Sugar, D., & Spotts, R. A. (2004). Etiology of bull’s eye rot of pear caused by Neofabraea spp. in Oregon, Washington, and California. Plant Disease, 88, 1134–1138.

    Article  CAS  Google Scholar 

  • Henriquez, J. L., Sugar, D., & Spotts, R. A. (2006). Induction of cankers on pear tree branches by Neofabraea alba and N. perennans, and fungicide effects on conidial production on cankers. Plant Disease, 90, 481–486.

    Article  CAS  Google Scholar 

  • Hortová, B., Novotný, D., & Erban, T. (2014). Physiological characteristics and pathogenicity of eight Neofabraea isolates from apples in Czechia. European Journal of Horticultural Science, 79, 327–334.

    Google Scholar 

  • Ivić, D., Cvjetković, B. & Sever, Z. (2009). Procjena šteta od bolesti jabuka nakon berbe. [Evaluation of loss caused by post-harvest diseases of apple.] In: Cvjetković B, ed. Proceedings of the Glasilo Biljne Zaštite, 2009: Zagreb: Hrvatsko društvo biljne zaštite, 44–45.

  • Johnston, P. R., Seifert, K. A., Stone, J. K., Rossman, A. Y., & Marvanová, L. (2014). Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus, 5, 91–120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leibinger, W., Breuker, B., Hahn, M., & Mendgen, K. (1997). Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology, 87, 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  • Lygis, V., Vasiliauskas, R., Larsson, K.-H., & Stenlid, J. (2005). Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scandinavian Journal of Forest Research, 20, 337–346.

    Article  Google Scholar 

  • Maxin, P. (2012). Improving apple quality by hot water treatment. Denmark: Aarhus University, PhD Thesis.

  • Maxin, P., Weber, R. W. S., Pedersen, H. L., & Williams, M. (2012). Control of a wide range of storage rots in naturally infected apples by hot-water dipping and rinsing. Postharvest Biology and Technology, 70, 25–31.

    Article  Google Scholar 

  • Michalecka, M., Bryk, H., Poniatowska, A., & Puławska, J. (2015). Identification of Neofabraea species causing bull’s eye rot of apple in Poland and their direct detection in apple fruit using multiplex PCR. Plant Pathology. doi:10.1111/ppa.12449.

    Google Scholar 

  • Miller, E. V. (1932). Some physiological studies of Gloeosporium perennans and Neofabraea malicorticis. Journal of Agricultural Research, 45, 65–77.

    Google Scholar 

  • Moral, J., Roca, L., & Trapero Casas, A. (2007). La lepra de la aceituna, una enfermedad poco conocida en el olivar. Vida Rural, 245, 54–56.

    Google Scholar 

  • Neri, F., Mari, M., Brigati, S., & Bertolini, P. (2009). Control of Neofabraea alba by plant volatile compounds and hot water. Postharvest Biology and Technology, 51, 425–430.

    Article  CAS  Google Scholar 

  • Rehner, S. A., & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 84–98.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Marquez, S., Bills, G. F., Dominguez Acuna, L., & Zabalgogeazcoa, I. (2010). Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Diversity, 41, 115–123.

    Article  Google Scholar 

  • Seifert, K. A. (2013). Nomenclatural novelties. Index Fungorum, 28, 1.

    Google Scholar 

  • Senula, A., & Ficke, W. (1985). Untersuchungen zur pathogenese des Gloeosporium-Rindenbrandes. [Studies on the pathogenesis of the Gloeosporium bark necrosis.]. Archives of Phytopathology and Plant Protection, 21, 183–198.

    Article  Google Scholar 

  • Serdani, M., Crous, P. W., Holz, G., & Petrini, O. (1998). Endophytic fungi associated with core rot of apples in South Africa, with specific reference to Alternaria species. Sydowia, 50, 257–271.

    Google Scholar 

  • Sholberg, P. L., & Haag, P. D. (1996). Incidence of postharvest pathogens of stored apples in British Columbia. Canadian Journal of Plant Pathology, 18, 81–85.

    Article  Google Scholar 

  • Spotts, R. A. (1990). Bull’s-eye rot. In A. L. Jones & H. S. Aldwinckle (Eds.), Compendium of apple and pear diseases (p. 56). St. Paul: APS Press.

    Google Scholar 

  • Spotts, R., Cervantes, L., & Mielke, E. (1999). Variability in postharvest decay among apple cultivars. Plant Disease, 83, 1051–1054.

    Article  Google Scholar 

  • Spotts, R. A., Seifert, K. A., Wallis, K. M., et al. (2009). Description of Cryptosporiopsis kienholzii and species profiles of Neofabraea in major pome fruit growing districts in the Pacific Northwest USA. Mycological Research, 113, 1301–1311.

    Article  CAS  PubMed  Google Scholar 

  • Tahir, I. (2014). Vad är det som förtär äpple under lagring?. [What is that consuming apple during storage?] Landskapsarkitektur trädgård växtproduktionsvetenskap, 14. Alnarp: Swedish University of Agricultural Sciences.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, A., & Burchill, R. (1972). The infection and perennation of the bitter rot fungus, Gloeosporium album, on apple leaves. Annals of Applied Biology, 70, 199–206.

    Article  Google Scholar 

  • Vassart, G., Georges, M., Monsieur, R., Brocas, H., Lequarre, A. S., & Christophe, D. (1987). A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science, 235, 683–684.

    Article  CAS  PubMed  Google Scholar 

  • Verkley, G. J. M. (1999). A monograph of the genus Pezicula and its anamorphs. Studies in Mycology, 44, 1–180.

    Google Scholar 

  • Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19, 6823–6831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, R. W. S. (2009a). Betrachtung möglicher Auswirkungen des Klimawandels auf Schadpilze im Obstbau am Beispiel von Fruchtfäuleerregern an Äpfeln. [An evaluation of possible effects of climate change on pathogenic fungi in apple production using fruit rots as examples.]. Erwerbs-Obstbau, 51, 115–120.

    Article  Google Scholar 

  • Weber, R. W. S. (2009b). Lagerfäulen an Äpfeln: Aktuelles aus Europa. [Storage rots of apples: a European perspective.]. Mitteilungen des Obstbauversuchsringes des Alten Landes, 64, 227–231.

    Google Scholar 

  • Weber, R. W. S. (2012). Mikroskopische Methode zum Nachweis pathogener Pilze aur Fruchtmumien von Äpfeln. [A microscopy-based method for screening apple fruit mummies for pathogenic fungi.]. Erwerbs-Obstbau, 54, 171–176.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18, 315–322.

    Google Scholar 

  • Zoller, S., Scheidegger, C., & Sperisen, C. (1999). PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. The Lichenologist, 31, 511–516.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Ibrahim Tahir (Swedish University of Agricultural Sciences) for providing valuable information. Molecular genetics analyses were supported by the COST LD-COST CZ project LD13039 (COST Action FA1103, Endophytes in Biotechnology and Agriculture) and by project QJ1210104 (Ministry of Agriculture of the Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kolařík.

Electronic supplementary material

Online Resource 1

PCR fingerprints using primers M13-core and ERIC 1R (PDF 254 kb)

Online Resource 2

(PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pešicová, K., Kolařík, M., Hortová, B. et al. Diversity and identification of Neofabraea species causing bull’s eye rot in the Czech Republic. Eur J Plant Pathol 147, 683–693 (2017). https://doi.org/10.1007/s10658-016-1036-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1036-1

Keywords

Navigation