Skip to main content
Log in

Characterization of Colletotrichum fructicola, a new causal agent of leaf black spot disease of sandy pear (Pyrus pyrifolia)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In recent years, a devastating fungal disease characterized by small black spots (<1 mm) on sandy pear (Pyrus pyrifolia Nakai) leaves has occurred in sudden outbreaks in southern China, resulting in severe defoliation and a loss of fruit quality and yield. To identify the etiology of the disease, 147 fungal isolates from sandy pear leaves showing typical black spots were collected from 30 orchards; 10 fungal species were included among the isolates, and the prevailing 124 Colletotrichum isolates were subjected to morphological and molecular characterization. Based on differences in colony morphology, the isolates were separated into five groups (I to V); the groups were specifically separated according to a combination of colony color, pigment, sporulation, perfect stage, and spore size. In addition to their morphological features, the five groups were assessed for their molecular and taxon statuses based on ITS sequences, multilocus regions (ITS, ACT, TUB, CHS-1, GAPDH), and the Apn2/MAT locus, which provided molecular proof for the identification of these isolates as Colletotrichum fructicola Prihastuti. The result also indicated different resolution of the three loci in delimiting the species. Koch’s postulates were fulfilled by inoculating conidium suspensions of the representative isolates on attached and detached leaves of sandy pear cvs. Cuiguan, Xueqing and Huali No. 2 with analogous conditions (under saturated humidity and with tiny wounds) to those that appeared in the field, and similar symptoms were elicited by the isolates, suggesting that C. fructicola was causing the disease. To our knowledge, this is the first report of C. fructicola causing leaf black spot of pear. The etiological clarification and characterization of the C. fructicola isolates provide useful information to aid in the understanding of leaf black spot disease in pears and for designing management strategies to control this economically significant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B., Waller, J., Abang, M. M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., & Liu, Z. Y. (2009). A polyphasic approach for studying Colletotrichum. Fungal Diversity, 39, 183–204.

    Google Scholar 

  • Cannon, P. F., Buddie, A. G., & Bridge, P. D. (2008). The typification of Colletotrichum gloeosporioides. Mycotaxon, 104, 189–204.

    Google Scholar 

  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.

  • Chen, Y. T., Liu, X. M., Chen, X. M., Chen, T., Wang, W., Zhang, C. H., Bao, J. P., & Huang, X. Z. (2011). Preliminary investigation and analysis of abnormal early defoliation of pear in Fujian. 29, 43–45.

  • Freeman, S., Katan, T., & Shabi, E. (1996). Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Applied and Environmental Microbiology, 62, 1014–1020.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukaya, M. (2004). First report of Japanese pear anthracnose disease caused by Colletotrichum acutatum and its chemical control (in Japanese). Japanese Journal of Phytopathology, 70, 184–189.

    Article  Google Scholar 

  • Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.

  • González, E., Sutton, T. B., & Correll, J. C. (2006). Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests. Phytopathology, 96, 982–992.

    Article  PubMed  Google Scholar 

  • Huang, F., Chen, G. Q., Hou, X., Fu, Y. S., Cai, L., Hyde, K. D., & Li, H. Y. (2013). Colletotrichum species associated with cultivated citrus in China. Fungal Diversity, 61, 61–74.

    Article  Google Scholar 

  • Huang, X. Z., Chen, Y. T., Lei, Y., Cai, S. H., & Chen, X. M. (2010). Causes and control strategies of a large number of early falling leaves of pear in Fujian (in Chinese). Chinese Agricultural Science Bulletin, 26, 91–95.

    Google Scholar 

  • Jiang, J. J., Zhai, H. Y., Li, H. N., Wang, Z. H., Chen, Y. S., Hong, N., Wang, G. P., Gilbert, N. C., & Xu, W. X. (2014). Identification and characterization of Colletotrichum fructicola causing black spots on young fruits related to bitter rot of pear (Pyrus bretschneideri Rehd.) in China. Crop Protection, 58, 41–48.

    Article  Google Scholar 

  • Johnston, P. R., & Jones, D. (1997). Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia, 89, 420–430.

    Article  CAS  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., Mcwilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Li, H. N., Jiang, J. J., Hong, N., Wang, G. P., & Xu, W. X. (2013). First report of Colletotrichum fructicola causing bitter rot of pear (Pyrus bretschneideri) in China. Plant Disease, 97, 1000.

    Article  Google Scholar 

  • Liu, W., Ye, N. X., Chen, Y. S., Lian, L. L., Jin, S., Lai, J. D., & Xie, Y. H. (2014). Identification and phylogenetic analysis of anthracnose pathogen Colletotrichum fructicola isolated from Camellia sinensis (in Chinese). Journal of Tea Science, 34, 95–104.

    Google Scholar 

  • Mckinney, H. H. (1923). Influence of soil, temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.

    Google Scholar 

  • Morita, Y., Yano, K., Matsumoto, K., Kotani, S., & Kurata, M. (1994). Occurrence and control of anthracnose on leaves of Japanese pear (in Japanese). Bulletin of the Kochi Agricultural Research Center, 3, 1–10.

    Google Scholar 

  • O’donnell, K., Nirenberg, H. I., Aoki, T., & Cigelnik, E. (2000). A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience, 41, 61–78.

  • Peng, L. J., Sun, T., Yang, Y. L., Cai, L., Hydef, K. D., Bahkali, A. H., & Liu, Z. Y. (2013). Colletotrichum species on grape in Guizhou and Yunnan provinces, China. Mycoscience, 54, 29–41.

    Article  Google Scholar 

  • Phoulivong, S. (2011). Colletotrichum, naming, control, resistance, biocontrol of weeds and current challenges. Current Research in Environmental & Applied Mycology, 1, 53–73.

    Google Scholar 

  • Phoulivong, S., Cai, L., Parinn, N., Chen, H., Abd-Elsalam, K. A., Chukeatirote, E., & Hyde, K. D. (2010). A new species of Colletotrichum from Cordyline fruticosa and Eugenia javanica causing anthracnose disease. Mycotaxon, 114, 247–257.

    Article  Google Scholar 

  • Prihastuti, H., Cai, L., Chen, H., McKenzie, E. H. C., & Hyde, K. D. (2009). Characterisation of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Diversity, 39, 89–109.

    Google Scholar 

  • Silva, D. N., Talhinas, P., Várzea, V., Cai, L., Paulo, O. S., & Batista, D. (2012). Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts. Mycologia, 104, 396–409.

    Article  CAS  PubMed  Google Scholar 

  • Simmonds, H. J. (1968). Type specimens of Colletotrichum var minor and Colletotrichum acutatum. Queensland Journal of Agricultural & Animal Sciences, 25, 17–37.

    Google Scholar 

  • Smit, W. A., Viljoen, C. D., Wingfield, B. D., Wingfield, M. J., & Calitz, F. J. (1996). A new canker disease of apple, pear, and plum rootstocks caused by Diaporthe ambigua in South Africa. Plant Disease, 80, 1331–1335.

    Article  Google Scholar 

  • Stephenson, S. A., Green, J. R., Manners, J. M., & Maclean, D. J. (1997). Cloning and characterisation of glutamine synthetase from Colletotrichum gloeosporioides and demonstration of elevated expression during pathogenesis on Stylosanthes guianensis. Current Genetics, 31, 447–454.

  • Su, Y. Y., Noireung, P., Liu, F., Hyde, K. D., Moslem, M. A., Bahkali, A. H., Abdelsalam, K. A., & Cai, L. (2011). Epitypification of Colletotrichum musae, the causative agent of banana anthracnose Mycoscience, 1–7.

  • Sutton, B. C. (1992). The genus Glomerella and its anamorph Colletotrichum. Wallingford: CAB international.

    Google Scholar 

  • Sutton, T. B., & Sanhueza, R. M. (1998). Necrotic leaf blotch of Golden Delicious-Glomerella leaf spot: a resolution of common names. Plant Disease, 82, 267–268.

    Article  Google Scholar 

  • Tamura, T., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tashiro, N., Manabe, K., & Ide, Y. J. (2012). Emergence and frequency of highly benzimidazole-resistant Colletotrichum gloeosporioides, pathogen of Japanese pear anthracnose, after discontinued use of benzimidazole. Journal of General Plant Pathology, 78, 221–226.

    Article  CAS  Google Scholar 

  • Tashiro, N., Idem, Y., & Etho, T. (2001). Occurrence of benzimidazole-tolerant isolate of Colletotrichum gloeosporioides, a causal fungus of anthracnose of Japanese pear and its effective fungicides (in Japanese). Kyushu Agricultural Research, 63, 81.

    Google Scholar 

  • Templeton, M. D., Rikkerink, E. H. A., Solon, S. L., & Crowhurst, R. N. (1992). Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene, 122, 225–230.

  • Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. New York: Academic Press.

  • Yaegashi, H., Kanematsu, S., & Ito, T. (2012). Molecular characterization of a new hypovirus infecting a phytopathogenic fungus, Valsa ceratosperma. Virus Research, 165, 143–150.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the earmarked fund for Pear Modern Agro-industry Technology Research System (CARS-29-10) and the Chinese Ministry of Agriculture, Industry Technology Research Project (200903004–05). The authors would like to thank Professor Yangdou Wei University of Saskatchewan, Canada, and Chaoxi Luo, Huazhong Agricultural University, China, for critical revisions of the manuscript.

Compliance with ethical standards

The authors declare no conflict of interest. This research work does not include any animal studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WenXing Xu or GuoPing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Phylogenetic analysis of Colletotrichum fructicola isolates and other species belonging to the C. gloeosporioides species complex based on the ITS sequences using the MEGA 5.2.2 software with 1,000 bootstrap replicates and other default parameters. Type strains are marked with symbol “*”. A and B, Phylogenetic tree constructed using the UPGMA and ML methods, respectively. The isolates of C. boninense and C. hippeastri are designated as outgroups. Bootstrap support values of more than 60 % are shown at the nodes. The isolates obtained in this study are indicated by a triangle (▲). Of these isolates, the 117 isolates showing identical ITS sequences are represented by FJ-1 and are indicated as “FJ-1 and other isolates”. (JPEG 642 kb)

Fig. S2

Phylogenetic tree based on the ITS sequences of the 25 Colletotrichum fructicola isolates obtained in this study and those of other reported isolates. The isolates of C. boninense, C. siamense, and C. gloeosporioides are shown as outgroups. Bootstrap support values greater than 60 % are shown at the nodes. The isolates obtained in this study are indicated by a triangle (▲). Out of these isolates, the 20 isolates showing identical ITS sequences are represented by FJ-1 and are indicated as “FJ-1 and other isolates.” The accession number, host and original country of each isolate are successively presented in the phylogenetic position of each C. fructicola isolate. An isolate obtained from Pyrus bretschneideri fruit in China is indicated by a blank triangle (Δ). (JPEG 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P.F., Zhai, L.F., Zhang, X.K. et al. Characterization of Colletotrichum fructicola, a new causal agent of leaf black spot disease of sandy pear (Pyrus pyrifolia). Eur J Plant Pathol 143, 651–662 (2015). https://doi.org/10.1007/s10658-015-0715-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0715-7

Keywords

Navigation