Skip to main content
Log in

Spatio-temporal distribution of Grapevine fanleaf virus (GFLV) in grapevine

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Grapevine fanleaf virus (GFLV) is the causal agent of grapevine degeneration disease, which causes progressive decline of infected vines and lowers the yield. The most important strategy to prevent the spread of GFLV is using healthy planting material and elimination of diseased plants. GFLV titre is known to be variable during the season; therefore we elaborated a spatio–temporal study of its distribution in different grapevine organs during the season. Our research showed that young leaves have high virus titre during the whole vegetative period, while mature leaves, tendrils and flower/berry clusters only at the beginning of the vegetative period. However seeds retained high virus titre after berries colouring. Phloem scrapings were shown to contain lower virus titres during the vegetative period, with the increase outside and at the beginning of the vegetative period. In flower/berry clusters, mature leaves and in tendrils, GFLV titre decreased significantly over the vegetative period. Semi-quantitative results obtained by ELISA were confirmed by qPCR. Additionally, different GFLV titres were shown in five different cultivars and different combinations of mixed infections with other grapevine viruses influenced the GFLV titre differently. Finally, correlation between the magnitude of symptoms’ appearance and GFLV titres was analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andret-Link, P., Laporte, C., Valat, L., Ritzenthaler, C., Demangeat, G., Vigne, E., Laval, V., Pfeiffer, P., Stussi-Garaud, C., & Fuchs, M. (2004). Grapevine fanleaf virus: still a major threat to the grapevine industry. Journal of Plant Pathology, 86, 183–195.

    CAS  Google Scholar 

  • Bouyahia, H., Potere, O., Boscia, D. (2003). Sampling methodology for the detection of Grapevine fanleaf virus by ELISA, in: Extended Abstracts, 14th Meeting ICVG. (pp. 204–205).

  • Čepin, U., Gutiérrez-Aguirre, I., Balažic, L., Pompe-Novak, M., Gruden, K., & Ravnikar, M. (2010). A one-step reverse transcription real-time PCR assay for the detection and quantitation of Grapevine fanleaf virus. Journal of Virological Methods, 170, 47–56.

    Article  PubMed  Google Scholar 

  • Fiore, N., Prodan, S., & Pino, A. (2009). Monitoring grapevine viruses by ELISA and RT-PCR throughout the year. Journal of Plant Pathology, 91, 489–493.

    CAS  Google Scholar 

  • Frantz, E., & Walker, M. (1995). Correlating ELISA values with the growth and yield components of GFLV infected grapevines. Vitis, 34, 131–132.

    Google Scholar 

  • Fuchs, M., Pinck, M., Serghini, M. A., Ravelonandro, M., Walter, B., & Pinck, L. (1989). The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13. The Journal of General Virology, 70, 955–962.

    Article  CAS  PubMed  Google Scholar 

  • Gouveia, P., Dandlen, S., Costa, Â., Marques, N., & Nolasco, G. (2012). Identification of an RNA silencing suppressor encoded by Grapevine leafroll-associated virus 3. European Journal of Plant Pathology, 133, 237–245.

    Article  CAS  Google Scholar 

  • Hren, M., Ravnikar, M., Brzin, J., Ermacora, P., Carraro, L., Bianco, P. A., Casati, P., Borgo, M., Angelini, E., Rotter, A., & Gruden, K. (2009). Induced expression of sucrose synthase and alcohol dehydrogenase I genes in phytoplasma-infected grapevine plants grown in the field. Plant Pathology, 58, 170–180.

    Article  Google Scholar 

  • Jovel, J., Walker, M., & Sanfaçon, H. (2007). Recovery of Nicotiana benthamiana plants from a necrotic response induced by a nepovirus is associated with RNA silencing but not with reduced virus titer. Journal of Virology, 81, 12285–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laimer, M., Lemaire, O., Herrbach, E., Goldschmidt, V., Minafra, A., Bianco, P., & Wetzel, T. (2009). Resistance to viruses, phytoplasmas and their vectors in the grapevine in europe: a review. Journal of Plant Pathology, 91, 7–23.

    Google Scholar 

  • Liebenberg, A., Freeborough, M.-J., Visser, C. J., Bellstedt, D. U., & Burger, J. T. (2009). Genetic variability within the coat protein gene of Grapevine fanleaf virus isolates from South Africa and the evaluation of RT-PCR, DAS-ELISA and ImmunoStrips as virus diagnostic assays. Virus Research, 142, 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Mekuria, T. A., Gutha, L. R., Martin, R. R., & Naidu, R. A. (2009). Genome diversity and intra- and interspecies recombination events in Grapevine fanleaf virus. Phytopathology, 99, 1394–1402.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, J. E., Vigne, E., & Fuchs, M. (2010). Genetic structure and molecular variability of Grapevine fanleaf virus populations. Virus Research, 152, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Pacifico, D., Caciagli, P., Palmano, S., Mannini, F., & Marzachì, C. (2011). Quantitation of Grapevine leafroll associated virus-1 and -3, Grapevine virus A, Grapevine fanleaf virus and Grapevine fleck virus in field-collected Vitis vinifera L. “Nebbiolo” by real-time reverse transcription-PCR. Journal of Virological Methods, 172, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pompe-Novak, M., Gutiérrez-Aguirre, I., Vojvoda, J., Blas, M., Tomažič, I., Vigne, E., Fuchs, M., Ravnikar, M., & Petrovič, N. (2007). Genetic variability within RNA2 of Grapevine fanleaf virus. European Journal of Plant Pathology, 117, 307–312.

    Article  CAS  Google Scholar 

  • Raski, D., Goheen, A., Lider, L., & Meredith, C. (1983). Strategies against grapevine fanleaf virus and its nematode vector. Plant Disease, 67, 335–339.

    Article  Google Scholar 

  • Ratcliff, F. (1997). A similarity between viral defense and gene silencing in plants. Science (80−.), 276, 1558–1560.

    Article  CAS  Google Scholar 

  • Reed, G., Lynn, F., & Meade, B. (2002). Use of coefficient of variation in assessing variability of quantitative assays. Clinical and Diagnostic Laboratory, 9, 1235–1239.

    Google Scholar 

  • Roth, B. M., Pruss, G. J., & Vance, V. B. (2004). Plant viral suppressors of RNA silencing. Virus Research, 102, 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Rowhani, A., Walker, M. A., & Rokni, S. (1992). Sampling strategies for the detection of grapevine fanleaf virus and the grapevine strain of tomato ringspot virus. Vitis, 31, 35–44.

    Google Scholar 

  • Sanfaçon, H., Wellink, J., Le Gall, O., Karasev, A., van der Vlugt, R., & Wetzel, T. (2009). Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Archives of Virology, 154, 899–907.

    Article  PubMed  Google Scholar 

  • Siddiqui, S. A., Sarmiento, C., Kiisma, M., Koivumäki, S., Lemmetty, A., Truve, E., & Lehto, K. (2008). Effects of viral silencing suppressors on tobacco ringspot virus infection in two Nicotiana species. The Journal of General Virology, 89, 1502–8.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, C. W., Daugherty, M. P., & Almeida, R. P. P. (2012). Seasonal dynamics and virus translocation of Grapevine leafroll-associated virus 3 in grapevine cultivars. Plant Pathology, 61, 977–985.

    Article  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 0034.01–0034.12.

    Article  Google Scholar 

  • Vigne, E., Bergdoll, M., Guyader, S., & Fuchs, M. (2004a). Population structure and genetic variability within isolates of Grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination. The Journal of General Virology, 85 Pt, 2435–2445.

    Article  Google Scholar 

  • Vigne, E., Komar, V., & Fuchs, M. (2004b). Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Research, 13, 165–79.

    Article  CAS  PubMed  Google Scholar 

  • Walter, B., & Etienne, L. (1987). Detection of the grapevine fanleaf viruses away from the period of vegetation. Journal of Phytopathology, 120, 355–364.

    Article  Google Scholar 

  • Zhang, Y. P., Uyemoto, J. K., Golino, D. A., & Rowhani, A. (1998). Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem-pitting disease. Phytopathology, 88, 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z. S., Dell’Orco, M., Saldarelli, P., Turturo, C., Minafra, A., & Martelli, G. P. (2006). Identification of an RNA-silencing suppressor in the genome of Grapevine virus A. The Journal of General Virology, 87, 2387–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Operation part financed by the European Union, European Social Fund. Operation implemented in the framework of the Operational Programme for Human Resources Development for the Period 2007–2013, Priority axis 1: Promoting entrepreneurship and adaptability, Main type of activity 1.1.: Experts and researchers for competitive enterprises.

We thank all vineyards owners for kindly providing materials from their vineyards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastazija Jež Krebelj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krebelj, A.J., Čepin, U., Ravnikar, M. et al. Spatio-temporal distribution of Grapevine fanleaf virus (GFLV) in grapevine. Eur J Plant Pathol 142, 159–171 (2015). https://doi.org/10.1007/s10658-015-0600-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0600-4

Keywords

Navigation