Skip to main content
Log in

Monitoring by real-time PCR of three water-borne zoosporic Pythium species in potted flower and tomato greenhouses under hydroponic culture systems

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The high-temperature-tolerant Pythium species P. aphanidermatum, P. helicoides, and P. myriotylum cause serious diseases in many crops under hydroponic culture systems in Japan. Control of the diseases is difficult because these zoosporic pathogens spread quickly. In this study, a real-time PCR method was developed for monitoring the spread of zoospores of the three pathogens. Specific primers and TaqMan probes were established using the internal transcribed spacer regions of the rDNA. Specificity was confirmed using known isolates of each species and closely related non-target species. The sensitivity of DNA detection was 10 f. for each pathogen. 10 f. DNA corresponded to 4 P. aphanidermatum, 3 P. myriotylum, and 4 P. helicoides zoospores, respectively. Therefore, this real-time PCR method was used to evaluate and monitor zoospores in the nutrient solutions of ebb-and-flow irrigation systems for potted flower production and closed hydroponic culture systems for tomato production. The results indicated that the pathogens were present in the hydroponic culture systems throughout the year, and spread before disease occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asano, T., Kageyama, K., & Hyakumachi, M. (1999). Surface disinfestation of resting spores of Plasmodiophora brassicae used to infect hairy roots of Brassica spp. Phytopathology, 89, 314–319.

    Article  CAS  PubMed  Google Scholar 

  • Asano, T., Senda, M., Suga, H., & Kageyama, K. (2010). Development of multiplex PCR to detect five Pythium species related to turf-grass diseases. Journal of Phytopathology, 158, 609–615.

    CAS  Google Scholar 

  • Bridge, P. D., Arora, D. K., Reddy, D. K., Elander, R. P., (Ed.), CAB International, New York. (1998). Interpretation of PCR methods for species definition. Applications of PCR in Mycology, 63–84

  • Chen, W. (1992). Restriction fragment length polymorphisms in enzymatically amplified ribosomal DNAs of three heterothallic Pythium species. Phytopathology, 82, 1467–1472.

    Article  CAS  Google Scholar 

  • Chilvers, M. I., du Toit, L. J., Akamatsu, H., & Peever, T. L. (2007). A real-time, quantitative PCR seed assay for Botrytis spp. that cause neck rot of onion. Plant Disease, 91, 599–608.

    Article  CAS  Google Scholar 

  • Edel, V., Bridge, P. D., Arora, D. K., Reddy, C. A., Elander, R. P., (Ed.), CAB international, New York. (1998). Polymerase chain reaction in mycology. Applications of PCR in Mycology, 1–20

  • Hong, C. X., & Moorman, G. W. (2005). Plant pathogens in irrigation water: challenges and opportunities. Critical Reviews in Plant Sciences, 24, 189–208.

    Article  Google Scholar 

  • Hong, C., Richardson, P. A., & Kong, P. (2002). Comparison of membrane filters as a tool for isolating Pithiaceous species from irrigation water. Phytopathology, 92, 610–616.

    Article  PubMed  Google Scholar 

  • Ishiguro, Y., Asano, T., Otsubo, K., Suga, H., & Kageyama, K. (2013). Simultaneous detection by multiplex PCR of the high-temperature-growing Pythium species: P. aphanidermatum, P. helicoides and P. myriotylum. Journal of General Plant Pathology, 79, 350–358.

    Article  CAS  Google Scholar 

  • Kageyama, K. (2011). Characteristics of high-temperature-growing Pythium species now-a-days frequently occurring disease. Plant Protect, 65, 32–26.

    Google Scholar 

  • Kageyama, K., Aoyagi, T., Sunouchi, R., & Fukui, H. (2002). Root rot of miniature roses caused by Pythium helicoides. Journal of General Plant Pathology, 68, 15–20.

    Article  Google Scholar 

  • Kageyama, K., Komatsu, T., & Suga, H. (2003a). Refined PCR protocol for detection of plant pathogens in soil. Journal of General Plant Pathology, 69, 153–160.

    CAS  Google Scholar 

  • Kageyama, K., Suzuki, M., Priyatmojo, A., Oto, Y., Ishiguro, K., Suga, H., Aoyagi, T., & Fukui, H. (2003b). Characterization and identification of asexual strains of Pythium associated with root rot of rose in Japan. Journal of Phytopathology, 151, 485–491.

    Article  Google Scholar 

  • Kageyama, K., Ishiguro, Y., Otsubo, K., Suzuki, H., Tsuji, T., Hashizume, F., Fujita, A., Suga, H. (2013). Monitoring of Pythium aphanidermatum and P. myriotylum in Nutrient Solution of Hydroponic Culture of Tomato Using Real Time PCR. Japanese Journal of Phytopathology (in press).

  • Klassen, G. R., Balcerzak, M., & de Cock, W. A. M. (1996). 5S ribosomal RNA gene spacers as species-specific probes for eight species of Pythium. Phytopathology, 86, 581–587.

    Article  CAS  Google Scholar 

  • Kontanis, E. J., & Reed, F. A. (2006). Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. Journal of Forensic Sciences, 51, 795–804.

    Article  CAS  PubMed  Google Scholar 

  • Lévesque, C. A., & de Cock, W. A. M. (2004). Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research, 108, 1363–1383.

    Article  PubMed  Google Scholar 

  • Li, M., Asano, T., Suga, H., & Kageyama, K. (2011). A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum and a survey of their occurrence in strawberry production areas of Japan. Plant Disease, 95, 1270–1278.

    Article  CAS  Google Scholar 

  • Li, M., Inada, M., Watanabe, H., Suga, H., & Kageyama, K. (2013). Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR. Microbes and Environments, 28(2), 195–203.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mackay, I. M., Arden, K. E., & Nitsche, A. (2002). Real-time PCR in virology. Nucleic Acids Research, 30, 1292–1305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCartney, H. A., Foster, S. J., Fraaije, B. A., & Ward, E. (2003). Molecular diagnostics for fungal plant pathogens. Pest Management Science, 59, 129–142.

    Article  CAS  PubMed  Google Scholar 

  • Meherun, N., Motohash, K., Watanabe, H., Chikuo, Y., Senda, M., Suga, H., Brasier, C., & Kageyama, K. (2011). Phytophthora chrysanthemi sp. nov., a new species causing root rot of chrysanthemum in Japan. Mycological Progress, 10, 21–31.

    Article  Google Scholar 

  • Miyake, N., Nagai, H., Kageyama, K. (2014) Wilting and root rot of poinsettia caused by three high-temperature-tolerant Pythium species in ebb-and-flow irrigation systems. Journal of General Plant Pathology , In press

  • Nielsen, C. J., Ferrin, D. M., & Stanghellini, M. E. (2006). Efficacy of biosurfactants in the management of Phytophthora capsici on pepper in recirculating hydroponic systems. Can J Plant Pathol Rev Can Phytopathologie, 28, 450–460.

    Article  CAS  Google Scholar 

  • Pettitt, T. R., Wakeham, A. J., Wainwright, M. F., & White, J. G. (2002). Comparison of serological, culture and bait methods for detection of Pythium and Phytophthora zoospores in water. Plant Pathology, 51, 720–727.

    Article  Google Scholar 

  • Postma, J., Geraats, B. P. J., Pastoor, R., & van Elsas, J. D. (2005). Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology, 95, 808–818.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, K. L., Martin, F. N., de Cock, A. W. A. M., Lévesque, C. A., Spies, C. F. J., Okubara, P. A., & Paulitz, T. C. (2013). Molecular detection and quantification of Pythium species: evolving taxonomy, new tools, and challenges. Plant Disease, 97, 4–20.

    Article  CAS  Google Scholar 

  • Suzuki, M., Togawa, M., & Yoneyama, C. (2005). Occurrence of Pythium root rot of strawberry caused by Pythium helicoides. Jpn J Phytopathology, 71, 209.

    Google Scholar 

  • Suzuki, H., Tsuji, T., Hashizume, H., Fujita, T., & Kuroda, K. (2013). Population dynamics of high-temperature-growing Pythium species on tomato in hydroponic and effects of water tempareture on incidence. Jpn J Phytopathology, 79, 58.

    Article  Google Scholar 

  • Szalanski, A. L., Sui, D. D., Harris, T. S., & Powers, T. O. (1997). Identification of cyst nematodes of agronomic and regulatory concern with PCR-RFLP of ITS 1. Journal of Nematology, 29, 255–267.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thelwell, N., Millington, S., Solinas, A., Booth, J., & Brown, T. (2000). Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research, 28, 3752–3761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Plaats-Niterink, A. J. (1981). Monograph of the genus Pythium. Centraalbureau voor Schimmelcultures. Stud Mycol, 21, 1–242.

    Google Scholar 

  • Wang, P. H., & Chang, C. W. (2003). Detection of the low-germinationrate resting oospores of Pythium myriotylum from soil by PCR. Letters in Applied Microbiology, 36, 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, T. (1977). Pathogenicity of Pythium myriotylum isolated from strawberry roots in Japan. Ann Phytopathol Soc Jpn, 43, 306–309.

    Article  Google Scholar 

  • Watanabe, H., Horinouchi, H., Tanahashi, I., & Kageyama, K. (2005). Occurrence of root rot of strawberry caused by Pythium helicoides, and pathogenicity to several crops. Jpn J Phytopathology, 71, 209–210.

    Google Scholar 

  • Watanabe, H., Taguchi, Y., Horinouchi, H., Hyakumachi, M., & Kageyama, K. (2007). Pythium and Phytophthora species associated with root and stem rots of KALANCHOE. Journal of General Plant Pathology, 73, 81–88.

    Article  Google Scholar 

  • Waterhouse, G. M. (1967). Key to Pythium Pringsheim. Commonw Mycol Inst Mycol Pap, 109, 1–15.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols, 315–322. A Guide to Methods and Applications. Innis, M. A., Gelgard, D. H., Sninsky, J. J., White, T. J., (Ed.), Academic Press, New York.

Download references

Acknowledgment

This research was funded by the development of diagnostic manual of high-temperature tolerant Pythium species in hydroponic culture system project for application in promoting new policy of Japanese Ministry of Agriculture Forestry and Fisheries. We thank Dr. M. D. Coffey, and Dr. S. Uematsu for providing isolates of Phytophthora species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Ishiguro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ishiguro, Y., Otsubo, K. et al. Monitoring by real-time PCR of three water-borne zoosporic Pythium species in potted flower and tomato greenhouses under hydroponic culture systems. Eur J Plant Pathol 140, 229–242 (2014). https://doi.org/10.1007/s10658-014-0456-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0456-z

Keywords

Navigation