Skip to main content
Log in

Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg−1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg−1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min−1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min−1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source: elaborated by the authors using data from the National Institute of Statistics and Geography (INEGI, 2010)

Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Adimalla, N. (2019). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42, 59–75. https://doi.org/10.1007/s10653-019-00270-1

    Article  CAS  Google Scholar 

  • Adimalla, N. (2020). Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environmental Geochemistry and Health, 42, 173–190. https://doi.org/10.1007/s10653-019-00324-4

    Article  CAS  Google Scholar 

  • Ahmad, M., Yu, Q., Chen, J., Cheng, S., Qin, W., & Zhang, Y. (2021). Chemical characteristics, oxidative potential, and sources of PM2.5 in wintertime in Lahore and Peshawar, Pakistan. Journal of Environmental Sciences, 102, 148–158. https://doi.org/10.1016/j.jes.2020.09.014

    Article  CAS  Google Scholar 

  • Aminiyan, M. M., Baalousha, M., Mousavi, R., Aminiyan, F. M., Hosseini, H., & Heydariyan, A. (2018). The ecological risk, source identification, and pollution assessment of heavy metals in road dust: A case study in Rafsanjan, SE Iran. Environmental Science and Pollution Research, 25, 13382–13395. https://doi.org/10.1007/s11356-017-8539-y

    Article  CAS  Google Scholar 

  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Reza-Khazdair, M., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2021.643972

    Article  Google Scholar 

  • Barlow, M., Nigam, S., & Berbery, E. H. (1998). Evolution of the North American monsoon system. Journal of Climate, 11, 2238–2257. https://doi.org/10.1175/1520-0442(1998)011%3c2238:EOTNAM%3e2.0.CO;2

    Article  Google Scholar 

  • Bartholomew, C. J., Li, N., Li, Y., Dai, W., Nibagwire, D., & Guo, T. (2020). Characteristic and health risk assessment of heavy metals in street dust for children in Jinhua, China. Environmental Science and Pollution Research, 27, 5042–5055. https://doi.org/10.1007/s11356-019-07144-0

    Article  CAS  Google Scholar 

  • Beauchamp, M., Malherbe, L., de Fouquet, C., Létinois, L., & Tognet, F. (2018). A polynomial approximation of the traffic contributions for kriging-based interpolation of urban air quality model. Environmental Modelling & Software, 105, 132–152. https://doi.org/10.1016/j.envsoft.2018.03.033

    Article  Google Scholar 

  • Borlaza, L. J. S., Cosep, E. M. R., Kim, S., Lee, K., Joo, H., Park, M., Bate, D., Cayetano, M. G., & Park, K. (2018). Oxidative potential of fine ambient particles in various environments. Environmental Pollution, 243, 1679–1688. https://doi.org/10.1016/j.envpol.2018.09.074

    Article  CAS  Google Scholar 

  • Brook, R. D., Rajagopalan, S., Popelll, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Jr., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1

    Article  CAS  Google Scholar 

  • Čakmak, D., Perović, V., Kresović, M., Pavlović, D., Pavlović, M., Mitrović, M., & Pavlović, P. (2020). Sources and a health risk assessment of potentially toxic elements in dust at children’s playgrounds with artificial surfaces: A case study in Belgrade. Archives of Environmental Contamination and Toxicology, 78, 190–205. https://doi.org/10.1007/s00244-019-00702-0

    Article  CAS  Google Scholar 

  • Calas, A., Uzu, G., Kelly, F. J., Houdier, S., Martins, J. M. F., Thomas, F., Molton, F., Charron, A., Dunster, C., Oliete, A., Jacob, V., Besombes, J.-L., Chevrier, F., & Jaffrezo, J.-L. (2018). Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France). Atmospheric Chemistry and Physics, 18, 7863–7875. https://doi.org/10.5194/acp-18-7863-2018

    Article  CAS  Google Scholar 

  • Chen, S. J., Yen, C. H., Huang, Y. C., Lee, B. J., Hsia, S., & Lin, P. T. (2012). Relationships between inflammation, Adiponectin, and Oxidative Stress in Metabolic Syndrome. PLoS ONE, 7(9), e45693. https://doi.org/10.1371/journal.pone.0045693

    Article  CAS  Google Scholar 

  • Chen, X., Guo, M., Feng, J., Liang, S., Han, D., & Cheng, J. (2019). Characterization and risk assessment of heavy metals in road dust from a developing city with good air quality and from Shanghai, China. Environmental Science and Pollution Research, 26, 11387–11398. https://doi.org/10.1007/s11356-019-04550-2

    Article  CAS  Google Scholar 

  • Clementi, E. A., Talusan, A., Vaidyanathan, S., Veerappan, A., Mikhail, M., Ostrofsky, D., Crowley, G., Kim, J. S., Kwon, S., & Nolan, A. (2019). Metabolic syndrome and air pollution: A narrative review of their cardiopulmonary effects. Toxics, 7(1), 6. https://doi.org/10.3390/toxics7010006

    Article  CAS  Google Scholar 

  • Consejo Nacional de Población (CONAPO). 2018. Sistema Nacional Urbano. Secretaria de Gobernación, Mexico 66 pages. ISBN: 978-607-427-315-1

  • Cortés, S., Zúñiga-Venegas, L., Pancetti, F., Covarrubias, A., Ramírez-Santana, M., Adaros, H., & Muñoz, L. (2021). A positive relationship between exposure to heavy metals and development of chronic diseases: A case study from Chile. International Journal of Environmental Research and Public Health, 18(4), 1419. https://doi.org/10.3390/ijerph18041419

    Article  CAS  Google Scholar 

  • Crespo, R., Alvarez, C., Hernandez, I., & García, C. (2020). A spatially explicit analysis of chronic diseases in small areas: A case study of diabetes in Santiago, Chile. International Journal of Health Geographics, 19, 24. https://doi.org/10.1186/s12942-020-00217-1

    Article  Google Scholar 

  • Dalstra, J. A. A., Kunst, A. E., Borrell, C., Breeze, E., Cambois, E., Costa, G., Geurts, J. J. M., Lahelma, E., Van Oyen, H., Rasmussen, N. K., Regidor, E., Spadea, T., & Mackenbach, J. P. (2005). Socioeconomic differences in the prevalence of common chronic diseases: An overview of eight European countries. International Journal of Epidemiology, 34, 316–326. https://doi.org/10.1093/ije/dyh386

    Article  CAS  Google Scholar 

  • Dat, N. D., Nguyen, V.-T., Bui, X.-T., Nguyen, L. S. P., Nguyen, X.-C., Tran, A.T.-D., Nguyen, T.-T.-A., Ju, Y.-R., Huynh, T.-M.-T., Nguyen, D.-H., Bui, H.-N., & Lin, C. (2021). Contamination, source attribution, and potential health risks of heavy metals in street dust of a metropolitan area in Southern Vietnam. Environmental Science and Pollution Research, 28, 50405–50419. https://doi.org/10.1007/s11356-021-14246-1

    Article  CAS  Google Scholar 

  • Espinosa-Zurutuza, M., González-Villalva, A., Albarrán-Alonso, J. C., Colín-Barenque, L., Bizarro-Nevares, P., Rojas-Lemus, M., López-Valdéz, N., & Fortoul, T. I. (2018). Oxidative stress as a mechanism involved in kidney damage after subchronic exposure to vanadium inhalation and oral sweetened beverages in a mouse model. International Journal of Toxicology, 37, 45–52. https://doi.org/10.1177/1091581817745504

    Article  CAS  Google Scholar 

  • Fang, T., Verma, V., Bates, J. T., Abrams, J., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., Russell, A. G., & Weber, R. J. (2016). Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmospheric Chemistry and Physics, 16, 3865–3879. https://doi.org/10.5194/acp-16-3865-2016

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, 4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026

    Article  CAS  Google Scholar 

  • Fleischer, N. L., Diez Roux, A. V., Alazraqui, M., Spinelli, H., & De Maio, F. (2011). Socioeconomic gradients in chronic disease risk factors in middle-income countries: Evidence of effect modification by urbanicity in argentina. American Journal of Public Health, 101, 294–301. https://doi.org/10.2105/AJPH.2009.190165

  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5, 47–58. https://doi.org/10.2478/v10102-012-0009-2

    Article  CAS  Google Scholar 

  • Freedman, V. A., Grafova, I. B., & Rogowski, J. (2011). Neighborhoods and chronic disease onset in later life. American Journal of Public Health, 101, 79–86. https://doi.org/10.2105/AJPH.2009.178640

    Article  Google Scholar 

  • Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014). Copper: Toxicological relevance and mechanisms. Archive of Toxicology, 88, 1929–1938. https://doi.org/10.1007/s00204-014-1355-y

    Article  CAS  Google Scholar 

  • Ghio, A. J., Carraway, M. S., & Madden, M. C. (2012). Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. Journal of Toxicology and Environmental Health, Part B, 15(1), 1–12. https://doi.org/10.1080/10937404.2012.632359

    Article  CAS  Google Scholar 

  • Godri, K. J., Harrison, R. M., Evans, T., Baker, T., Dunster, C., Mudway, I. S., & Kelly, F. J. (2011). Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London. PLoS ONE, 6, e21961. https://doi.org/10.1371/journal.pone.0021961

    Article  CAS  Google Scholar 

  • Gosselin, M., & Zagury, G. J. (2020). Metal(loid)s inhalation bioaccessibility and oxidative potential of particulate matter from chromated copper arsenate (CCA)-contaminated soils. Chemosphere, 238, 124557. https://doi.org/10.1016/j.chemosphere.2019.124557

    Article  CAS  Google Scholar 

  • Grattagliano, I., Palmieri, V. O., Portincasa, P., Moschetta, A., & Palasciano, G. (2008). Oxidative stress-induced risk factors associated with the metabolic syndrome: A unifying hypothesis. Journal of Nutritional Biochemistry, 19, 491–504. https://doi.org/10.1016/j.jnutbio.2007.06.011

    Article  CAS  Google Scholar 

  • Habtemariam, S. (2019). Modulation of reactive oxygen species in health and disease. Antioxidants, 8, 513. https://doi.org/10.3390/antiox8110513

    Article  CAS  Google Scholar 

  • He, R.- W., Shirmohammadi, F., Gerlofs-Nijland, M. E., Sioutas, C., & Cassee, F. R. (2018). Pro-inflammatory responses to PM0.25 from airport and urban traffic emissions. Science of the Total Environment, 640–641, 997–1003. https://doi.org/10.1016/j.scitotenv.2018.05.382

  • INEGI. (2020). Prevalencia de Obesidad, Hipertensión y Diabetes para los Municipios de México 2018. Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/investigacion/pohd/2018/

  • INEGI. (2021). Censo Población y Vivienda 2020. Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/programas/ccpv/2020/

  • Jenssen, N. A. H., Yang, A., Strak, M., Steenhof, M., Hellack, B., Gerlofs-Nijland, M. E., Kuhlbusch, T., Kelly, F., Harrison, R., Brunekreef, B., Hoek, G., & Cassee, F. (2014). Oxidative potential of particulate matter collected at sites with different source characteristics. Science of the Total Environment, 472, 572–581. https://doi.org/10.1016/j.scitotenv.2013.11.099

    Article  CAS  Google Scholar 

  • Jeong, C. H., Traub, A., Huang, A., Hilker, N., Wang, J. M., Herod, D., Dabek-Zlotorzynska, E., Celo, V., & Evans, G. J. (2020). Long-term analysis of PM2.5 from 2004 to 2017 in Toronto: Composition, sources, and oxidative potential. Environmental Pollution, 263, 114652. https://doi.org/10.1016/j.envpol.2020.114652

    Article  CAS  Google Scholar 

  • Kabir, H., Kormoker, T., Islam, S., Khan, R., Shammi, R. S., Tusher, T. R., Proshad, R., Islam, S., & Idris, A. M. (2021). Potentially toxic elements in street dust from an urban city of a developing country: Ecological and probabilistic health risks assessment. Environmental Science and Pollution Research, 28, 57126–57148. https://doi.org/10.1007/s11356-021-14581-3

    Article  CAS  Google Scholar 

  • Kashuba, R., Menzie, C., & Martin, L. (2021). Risk of cardiovascular disease is driven by different combinations of environmental, medical and behavioral factors: Building a conceptual model for cumulative risk assessment. Human and Ecological Risk Assessment: An International Journal, 27, 1902–1925. https://doi.org/10.1080/10807039.2021.1925083

    Article  CAS  Google Scholar 

  • Kastury, F., Smith, E., & Juhasz, A. L. (2017). A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Science of the Total Environment, 574, 1054–1074. https://doi.org/10.1016/j.scitotenv.2016.09.056

    Article  CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039

    Article  CAS  Google Scholar 

  • Kim, K., & Park, H. (2021). Co-exposure to heavy metals and hypertension among adults in South Korea. Exposure & Health, 14, 139–147. https://doi.org/10.1007/s12403-021-00423-7

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gasiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Liang, J., & Mao, J. (2015). Source analysis of global anthropogenic lead emissions: Their quantities and species. Environmental Science and Pollution Research, 22, 7129–7138. https://doi.org/10.1007/s11356-014-3878-4

  • Lin, B., & Zhu, J. (2018). Changes in urban air quality during urbanization in China. Journal of Clear Production, 188, 312–321. https://doi.org/10.1016/j.jclepro.2018.03.293

    Article  CAS  Google Scholar 

  • Lionetto, M. G., Guascito, M. R., Giordano, M. E., Caricato, R., De Bartolomeo, A. R., Romano, M. P., Conte, M., Dinoi, A., & Contini, D. (2021). Oxidative potential, cytotoxicity, and intracellular oxidative stress generating capacity of PM10: A case study in South Italy. Atmosphere, 12(4), 464. https://doi.org/10.3390/atmos12040464

    Article  CAS  Google Scholar 

  • Loukzadeh, Z., Hazery, A., Zare, Z., & Mehrparvar, A. H. (2021). Relationship between metabolic syndrome and pulmonary function in workers with respiratory dust exposure in Iran. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15, 102161. https://doi.org/10.1016/j.dsx.2021.05.034

    Article  CAS  Google Scholar 

  • Maaten, S., Kephart, G., Kirkland, S., & Andreou, P. (2008). Chronic disease risk factors associated with health service use in the elderly. BMC Health Services Research, 8, 237. https://doi.org/10.1186/1472-6963-8-237

    Article  Google Scholar 

  • Mair, F. S., & Jani, B. D. (2020). Emerging trends and future research on the role of socioeconomic status in chronic illness and multimorbidity. The Lancet Public Health, 5, 128–129. https://doi.org/10.1016/S2468-2667(20)30001-3

    Article  Google Scholar 

  • Malakootian, M., Mohammadi, A., Nasiri, A., Conti, G., & Faraji, M. (2022). Correlation between heavy metal concentration and oxidative potential of street dust. Air Quality, Atmosphere & Health, 15, 731–738. https://doi.org/10.1007/s11869-021-01130-7

    Article  CAS  Google Scholar 

  • Mandal, R., Kaur, S., Gupta, V. K., & Joshi, A. (2021). Heavy metals controlling cardiovascular diseases risk factors in myocardial infarction patients in critically environmentally heavy metal-polluted steel industrial town Mandi-Gobindgarh (India). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01068-w

    Article  Google Scholar 

  • Masri, S., LeBrón, A. M. W., Logue, M. D., Valencia, E., Ruiz, A., Reyes, A., & Wu, J. (2021). Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: Implications for health and environmental justice. Environmental Science: Processes & Impacts, 23, 812–830. https://doi.org/10.1039/D1EM00007A

    Article  CAS  Google Scholar 

  • Men, C., Liu, R., Wang, Q., Guo, L., & Shen, Z. (2018). The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Science of the Total Environment, 637–638, 844–854. https://doi.org/10.1016/j.scitotenv.2018.05.059

    Article  CAS  Google Scholar 

  • Meza-Figueroa, D., Barboza-Flores, M., Romero, F. M., Acosta-Elias, M., Hernández-Mendiola, E., Maldonado-Escalante, F., Pérez-Segura, E., González-Grijalva, B., Meza-Montenegro, M., García-Rico, L., Navarro-Espinoza, S., Santacruz-Gómez, K., Gallego-Hernández, A., & Pedroza-Montero, M. (2020). Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. Science of the Total Environment, 713, 136481. https://doi.org/10.1016/j.scitotenv.2019.136481

    Article  CAS  Google Scholar 

  • Meza-Figueroa, D., De la O Villanueva, M., & De la Parra, M. (2007). Heavy metal distribution in dust from Elementary schools in Hermosillo, Sonora, Mexico. Atmospheric Environment, 41, 276–288. https://doi.org/10.1016/j.atmosenv.2006.08.034

    Article  CAS  Google Scholar 

  • Meza-Montenegro, M. M., Valenzuela-Quintanar, A. I., Balderas-Cortes, J. J., Yanez-Estrada, L., Gutierrez-Coronado, M. L., Cuevas-Robles, A., & Gandolfi, A. J. (2013). Exposure assessment of organochlorine pesticides, arsenic, and lead in children from the major agricultural areas in Sonora, Mexico. Archives of Environmental Contamination and Toxicology, 64, 519–527. https://doi.org/10.1007/s00244-012-9846-4

  • Moreno-Rodríguez, V., Del Rio-Salas, R., Adams, D. K., Ochoa-Landin, L., Zepeda, J., Gómez-Alvarez, A., Palafox-Reyes, J., & Meza-Figueroa, D. (2015). Historical trends and sources of TSP in a Sonora desert city: Can the North America Monsoon enhance dust emissions? Atmospheric Environment, 110, 111–121. https://doi.org/10.1016/j.atmosenv.2015.03.049

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118

  • Naraki, H., Keshavarzi, B., Zarei, M., Moore, F., Abbasi, S., Kelly, F. J., Dominguez, A. O., & Jaafarzadeh, N. (2021). Urban street dust in the Middle East oldest oil refinery zone: Oxidative potential, source apportionment, and health risk assessment of potentially toxic elements. Chemosphere, 268, 128825. https://doi.org/10.1016/j.chemosphere.2020.128825

    Article  CAS  Google Scholar 

  • Navarro-Estupiñan, J., Robles-Morua, A., Díaz-Caravantes, R., & Vivoni, E. R. (2020). Heat risk mapping through spatial analysis of remotely-sensed data and socioeconomic vulnerability in Hermosillo, México. Urban Climate, 31, 100576. https://doi.org/10.1016/j.uclim.2019.100576

    Article  Google Scholar 

  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Norddal, G. A., Wifstad, A., & Lian, O. S. (2022). ‘It’s like getting your car checked’: The social construction of diabetes risk among participants in a population study. Health, Risk & Society, 3–4, 93–108. https://doi.org/10.1080/13698575.2022.2028742

    Article  Google Scholar 

  • Osorio-Martinez, J., Silva, L. F. O., Flores, E. M. M., Nascimiento, M. S., Picoloto, R. S., & Olivero-Verbel, J. (2021). Environmental and human health risks associated with exposure to hazardous elements present in urban dust from Barranquilla, Colombian Caribbean. Journal of Environmental Quality, 50, 350–363. https://doi.org/10.1002/jeq2.20200

  • Planchart, A., Green, A., Hoyo, C., & Mattingly, C. J. (2018). Heavy metal exposure and metabolic syndrome: Evidence from human and model system studies. Current Environmental Health Reports, 5, 110–124. https://doi.org/10.1007/s40572-018-0182-3

    Article  CAS  Google Scholar 

  • Qui, G., Song, R., & He, S. (2019). The aggravation of urban air quality deterioration due to urbanization, transportation and economic development – Panel models with marginal effect analyses across China. Science of The Total Environment, 651, 1114–1125. https://doi.org/10.1016/j.scitotenv.2018.09.219

  • Reyes-Castro, P. A. (2019). Mortalidad intraurbana, envejecimiento y marginación en Hermosillo, Sonora. Región y Sociedad, 31, e1209. https://doi.org/10.22198/rys2019/31/1209

    Article  Google Scholar 

  • Rojas-Lemus, M., López-Valdez, N., Bizarro-Nevares, P., González-Villalva, A., Ustarroz-Cano, M., Zepeda-Rodríguez, A., Pasos-Nájera, F., García-Peláez, I., Rivera-Fernández, N., & Fortoul, T. I. (2021). Toxic effects of inhaled vanadium attached to particulate matter: A literature review. International Journal of Environmental Research and Public Health, 18, 8457. https://doi.org/10.3390/ijerph18168457

    Article  CAS  Google Scholar 

  • Sadykhov, G. B., Goncharov, K. V., Kashenkov, D. Y., & Olyunina, T. V. (2020). Vanadium recovery from the waste sludge of the lime-sulfuric acid processing of converter slag. Russian Metallurgy (metally). https://doi.org/10.1134/S0036029520070125

    Article  Google Scholar 

  • Santos-Francés, F., Martínez-Graña, A., Zarza, C., Sánchez, A., & Rojo, P. (2017). Spatial distribution of heavy metals and the environmental quality of soil in the Northern Plateau of Spain by geostatistical methods. International Journal of Environmental Research and Public Health, 14, 568. https://doi.org/10.3390/ijerph14060568

    Article  CAS  Google Scholar 

  • Scarl, R. T., Lawrence, C. M., Gordon, H. M., & Nunemaker, C. S. (2017). STEAP4: Its emerging role in metabolism and homeostasis of cellular iron and copper. Journal of Endocrinology, 234, 123–134. https://doi.org/10.1530/JOE-16-0594

    Article  Google Scholar 

  • Schiavo, B., Meza-Figueroa, D., Pedroza-Montero, M., Vidal-Solano, J., González-Grijalva, Navarro-Espinoza, S., Romero, F., Hernández, E., Gutiérrez-Ruiz, M. E., & Ceniceros-Gómez, A. E. (2021). In vitro assessment oral and respiratory bioaccessibility of Mn in school dust: Insight of seasonality in a semiarid environment. Applied Geochemistry, 134, 105102. https://doi.org/10.1016/j.apgeochem.2021.105102

    Article  CAS  Google Scholar 

  • Scibior, A., Pietrzyk, L., Plewa, Z., & Skiba, A. (2020). Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. Journal of Trace Elements in Medicine and Biology, 61, 126508. https://doi.org/10.1016/j.jtemb.2020.126508

    Article  CAS  Google Scholar 

  • Shi, W., Wu, B., & Stein, A. (2016). Uncertainty modelling and quality control for spatial data. CRC Press: Boca Raton, FL, ISBN 9781498733281

  • Shi, T., Schins, R. P. F., Knaapen, A. M., Kuhlbusch, T., Pitz, M., Heinrich, J., & Borm, P. J. A. (2003). Hydroxyl radical generation by election paramagnetic resonance as a new method to monitor ambient particulate matter composition. Journal of Environmental Monitoring, 5, 550–556. https://doi.org/10.1039/B303928P

    Article  CAS  Google Scholar 

  • Snyder, R., Rajan, J., Costa, F., Lima, H. C. A. V., Calcagno, J. I., Couto, R. D., Riley, L. W., Reis, M. G., Ko, A. I., & Ribeiro, G. S. (2017). Differences in the prevalence of non communicable disease between slum dwellers and the general population in a large urban area in Brazil. Tropical Medicine and Infectious Disease, 2, 47. https://doi.org/10.3390/tropicalmed2030047

    Article  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology. Experientia Supplementum. (Vol. 101). Basel: Springer. https://doi.org/10.1007/978-3-7643-8340-4_6

    Chapter  Google Scholar 

  • USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response.

    Google Scholar 

  • USEPA. (2007). Method 6200: Field portable X-ray fluorescence spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2011). Integrated risk information system (IRIS). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Wang, Y., Yang, K., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. CATENA, 125, 200–205. https://doi.org/10.1016/j.catena.2014.10.023

    Article  CAS  Google Scholar 

  • Weichenthal, S., Crouse, D. L., Pinault, L., Godri-Pollitt, K., Lavigne, E., Evans, G., van Donkelaar, A., Martin, R. V., & Burnett, R. T. (2016). Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environment Research, 146, 92–99. https://doi.org/10.1016/j.envres.2015.12.013

    Article  CAS  Google Scholar 

  • WHO. (2018). World health statistics 2018: Monitoring health for the SDGs, sustainable development goals. Geneve: WHO.

    Google Scholar 

  • Xu, F. F., Qiu, X. H., Hu, X. Y., Shang, Y., Pardo, M., Fang, Y., Wang, J., Rudich, Y., & Zhu, T. (2018). Effects on IL-1β signaling activation induced by water and organic extracts of fine particulate matter (PM2.5) in vitro. Environmental Pollution, 237, 592–600. https://doi.org/10.1016/j.envpol.2018.02.086

    Article  CAS  Google Scholar 

  • Xu, J.-W., Martin, R. V., Evans, G. J., Umbrio, D., Traub, A., Meng, J., van Donkelaar, A., You, H., Kulka, R., Burnett, R. T., & Godri Pollitt, K. J. (2021b). Predicting spatial variations in multiple measures of oxidative burden for outdoor fine particulate air pollution across Canada. Environmental Science and Technology, 55, 9750–9760. https://doi.org/10.1021/acs.est.1c01210

    Article  CAS  Google Scholar 

  • Xu, P., Liu, A., Li, F., Tinkov, A. A., Liu, L., & Zhou, J.-C. (2021a). Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis. Environmental Pollution, 273, 116480. https://doi.org/10.1016/j.envpol.2021.116480

    Article  CAS  Google Scholar 

  • Yang, A., Jedynska, A., Hellack, B., Kooter, I., Hoek, G., Brunekreef, B., Kuhlbusch, T. A. J., Cassee, F. R., & Janssen, N. A. H. (2014). Measurement of the oxidative potential ofPM2.5 and its constituents: The effect of extraction solvent and filter type. Atmospheric Environment, 83, 35–42. https://doi.org/10.1016/j.atmosenv.2013.10.049

    Article  CAS  Google Scholar 

  • Yang, A. M., Lo, K., Zheng, T. Z., Yang, J. L., Bai, Y. N., Feng, Y. Q., Cheng, N., & Liu, S. M. (2020). Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Diseases and Translational Medicine, 6, 251–259. https://doi.org/10.1016/j.cdtm.2020.02.005

    Article  Google Scholar 

  • Zhang, X., Staimer, N., Gillen, D. L., Tjoa, T., Schauer, J. J., Shafer, M. M., Hasheminassab, S., Pakbin, P., Vaziri, N. D., Sioutas, C., & Delfino, R. J. (2016). Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environmental Research, 150, 306–319. https://doi.org/10.1016/j.envres.2016.06.019

    Article  CAS  Google Scholar 

  • Zhao, C., Liu, X., & Leung, L. R. (2012). Impact of the Desert dust on the summer monsoon system over Southwestern North America. Atmospheric Chemistry and Physics, 12, 3717–3731. https://doi.org/10.5194/acp-12-3717-2012

    Article  CAS  Google Scholar 

  • Zhou, J., Ma, X., Tian, J., Hong, F., & Li, J. (2021). Spatial distribution and risk factors of adverse treatment outcomes of tuberculosis in Guizhou, China, 2013–2018. Scientific Reports, 11, 7706. https://doi.org/10.1038/s41598-021-86994-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Sofía Navarro-Espinoza for help with some analysis of oxidative potential and Carlos Ibañez del Rivero and Lilian Hernández for sampling.

Funding

National Council for Sciences and Technology in Mexico (CONACyT) Grant A1-S-29697 to Professor D. Meza-Figueroa. Results of this paper are part of a post-doctoral stay carried out by Dr. Benedetto Schiavo funded from the same grant and supervised by Dra. Diana Meza-Figueroa.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. BS contributed to conceptualization, methodology, data curation, and writing-original draft. DM-F contributed to conceptualization, methodology, resources, funding acquisition, writing—review and editing. EV-J contributed to data curation and visualization. AR-M and AA-M contributed to methodology, data curation, writing—review and editing. PR-C contributed to methodology, data curation, and visualization. CI contributed to visualization, writing—review and editing. BG-G contributed to methodology, validation, data curation, and resources. MP-M contributed to methodology and data curation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Benedetto Schiavo or Diana Meza-Figueroa.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavo, B., Meza-Figueroa, D., Vizuete-Jaramillo, E. et al. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. Environ Geochem Health 45, 3229–3250 (2023). https://doi.org/10.1007/s10653-022-01403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01403-9

Keywords

Navigation