Skip to main content
Log in

Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Various research studies have shown that exposure to radon gas is a cause of concern for health effects to the public. The present work has been carried out for the radiological risk assessment to the public due to the presence of radon isotopes in drinking water of Barnala district of Punjab, India, for the first time using scintillation-based radiation detector. A total of 100 samples were collected from different sources of water (canal and underground water) from 25 villages on grid pattern of 6 × 6 km2 in the study area for uniform mapping. In situ measurements were carried out to find out Rn-222 concentration in water samples. The measured values have been found to vary from 0.17 ± 0.01 to 9.84 ± 0.59 BqL−1 with an average value of 3.37 ± 0.29 BqL−1, which is well below the recommended limit of 100 BqL−1(WHO 2004). The annual effective dose due to ingestion and inhalation of radon has also been calculated for various age groups like infants, children and adults to understand the age-wise dose distribution. The calculated values suggest that there is no significant health risk to the general public from radon in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulrahman, I., & Alabdula’aly, . (2014). Occurrence of radon in groundwater of Saudi Arabia. Journal of Environmental Radioactivity, 138, 186–191.

    Google Scholar 

  • Akar Tarim, U., Gurler, O., Akkaya, N., Kilic, S., Yalein, G. K., & Gundogdu, O. (2012). Evaluation of radon concentration in well and tap waters in Bursa Turkey. Radiation Protection Dosimetry, 150(2), 207–212.

    CAS  Google Scholar 

  • Al Zabadi, H., Mallah, K., & Saffarini, G. (2015). Indoor exposure assessment of radon in the elementary schools Palestine. International Journal of Radiation Research, 13(3), 221–228.

    Google Scholar 

  • Bajwa, B. S., Mahajan, S., Singh, H., Singh, J., Singh, S., Walia, V., & Virk, H. S. (2005). A study of groundwater radon concentration in Punjab and Himachal Pradesh States India. Indoor and Inbuilt Environment, 14(6), 481–486.

    CAS  Google Scholar 

  • Banish, A., Arabshahi, H., & Pourhabib, Z. (2011). Radioactivity and dose assessment of heavy radioactive pollution, radon and radium from water sources of 3 northern regions in Iran. International Journal of Physical Science, 6(35), 7969–7977.

    Google Scholar 

  • Brudecki, K., Li, W. B., Meisenberg, O., Tschiersch, J., Hoeschen, C., & Oech, U. (2014). Age dependent inhalation dose to members of the public from indoor short-lived radon progeny. Radiation and Environmental Biophysics, 53(3), 535–549.

    CAS  Google Scholar 

  • Carvalho, F. P., Oliveira, J. M., Lopes, I., & Batista, A. (2007). Radionuclides from past uranium mining in rivers of Portugal. Journal of Environmental Radioactivity, 98, 298–314.

    CAS  Google Scholar 

  • Cho, J. S., Ahn, J. K., Kim, H.-C., & Lee, D. W. (2004). Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method. Journal of Environmental Radioactivity, 75, 105–112.

    CAS  Google Scholar 

  • Choubey, V. M., & Ramola, R. C. (1997). Correlation between geology and radon levels in groundwater, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. Environmental Geology, 32, 258–262.

    CAS  Google Scholar 

  • Dimitrious Nikolopoulos & Annal Louizi. (2008). Study of indoor radon and radon in drinking water in Greece and Cyprus: Implications to exposure and dose. Radiation Measurements, 43, 1305–1314.

    Google Scholar 

  • Fatima, I., Zaidi, M. A., & Tahir, S. N. A. (2007). Measurement of natural radioactivity in bottled drinking water in Pakistan and consequent dose estimates. Radiation Protection Dosimetry, 123, 234–240.

    CAS  Google Scholar 

  • Fonollosa, E., Peñalver, A., Borrull, F., & Aguilar, C. (2016). Radon in spring waters in the south of Catalonia. Journal of Environmental Radioactivity, 151, 275–281.

    CAS  Google Scholar 

  • Gaware, J. J., Sahoo, B. K., Sapra, B. K., & Mayya, Y. S. (2011). Indigenous development and networking of online radon monitors in the underground uranium mine. Radiation Protection and Environment, 34, 37–40.

    Google Scholar 

  • Gundersen, L. C. S., Randall Schumann, R., Otton, J. K., Dubiel, R. F., Douglass, E., & Owen & Kendell A. Dickinson, . (1992). Geology of radon in the United States. Geological Society of America Special Papers, 271, 1–16.

    Google Scholar 

  • Henshaw, D. E. (1990). Radon as a causative factor in induction of myeloid leukemia and other cancers. Lancet, 355, 1008–1015.

    Google Scholar 

  • ICRP International Commission Radiation Protection. (2010). Radiological protection against radon exposure. ICRP Publication 126. Annals of the ICRP, 43, 3–37.

    Google Scholar 

  • Jobbágy, V., Altzitzoglou, T., Malu, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. Journal of Environmental Radioactivity, 173, 18–24.

    Google Scholar 

  • Kansal, S., Mehra, R., & Singh, N. P. (2011). Uranium concentration in groundwater samples belonging to some areas of Western Haryana, India using Fission track registration technique. Journal of Public Health and Epidemiology, 3(8), 352–357.

    Google Scholar 

  • Krewski, D., Lubin, J. H., Zeilinski, J. M., MichealAlavanja, V. S., Catalan, , et al. (2005). Residential radon and risk of lung cancer: A analysis of 7 North American case control studies. Epidemiology, 16(2), 137–145.

    Google Scholar 

  • Kurttio, P., Harmoinen, A., Saha, H., Saha, L., & Zeev karpas, Hannu Komulainen & Anssi Auvinen, . (2006). Kidney toxicity of ingested uranium from drinking water. American Journal of Kidney Diseases, 47(6), 972–982.

    CAS  Google Scholar 

  • Lawrence, E., Poeter, E., & Wanty, R. (1991). Geohydrologic, geochemical, and geologic controls on the occurrence of radon in ground water near Conifer, Colorado, USA. Journal of Hydrology, 127, 367–386.

    CAS  Google Scholar 

  • Lubin, J. H., Boice, J. D., & Jr. . (1997). Lung cancer risk for residential radon: Meta-analysis of eight epidemiologic studies. Journal of National Council Institute, 89(1), 49–57.

  • Lubin, J. H., & J. D. . (1995). Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. Journal of the National Cancer Institute, 87(11), 817–827.

    CAS  Google Scholar 

  • Marques, A. L., dos Santos, W., & Geraldo, L. P. (2004). Direct measurements of radon activity in water from various natural sources using nuclear track detectors. Applied Radiation and Isotopes, 60, 801–804.

    CAS  Google Scholar 

  • Mehra, R., Bhagotra, P., & Kaur, K. (2015). Radon and thoron levels of Mansa and Mukutsar district of Punjab India. Frontiers in Environmental Science, 3, 37.

    Google Scholar 

  • Mehra, R., Kaur, K., & Bhagotra, P. (2015). Annual effective dose of radon due to exposure in indoor air and groundwater in Bathinda district of Punjab. Indoor and Built Environment, 25(5), 848–856.

    Google Scholar 

  • Mishra, R., & Mayya, Y. S. (2008). Study of a deposition-based direct thoron progeny sensor (DTPS) technique for estimating equilibrium equivalent thoron concentration (EETC) in indoor environment. Radiation Measurements, 43, 1408–1416.

    CAS  Google Scholar 

  • Nazir, S. (2020). Continuous radon measurements at high altitude physics observatory, Gulmarg, Kashmir valley, J&K. Mendeley Data. https://doi.org/10.17632/vdzpw2hsbb.4.

  • Nazir, S., Shakeel Simnani, B. K., Sahoo, I. R., & Sajad Masood, (2020a). Monitoring geothermal springs and groundwater of Pir Panjal, Jammu and Kashmir for radon contamination. Journal of Radioanalytical and Nuclear Chemistry, 326(3), 1915–1923. https://doi.org/10.1007/s10967-020-07451-8

    Article  CAS  Google Scholar 

  • Nazir, S., Simnani, S., Sahoo, B. K., et al. (2020b). Dose estimation of radioactivity in groundwater of Srinagar City, Northwest Himalaya, employing fluorimetric and scintillation techniques. Environmental Geochemistry Health, 43, 837–854. https://doi.org/10.1007/s10653-020-00576-5.

    Article  CAS  Google Scholar 

  • Nazir, S., Simnani, S., Mishra, R., et al. (2020c). Simultaneous measurements of radon, thoron and their progeny for inhalation dose assessment in indoors of Srinagar, J&K, India. Journal of Radioanalytical and Nuclear Chemistry, 325, 315–328. https://doi.org/10.1007/s10967-020-07233-2.

    Article  CAS  Google Scholar 

  • NCBI. (1999). National Research Council committee on Risk Assessment of exposure to radon in drinking water. National Academic Press.

    Google Scholar 

  • Ramola, R. C., Sandhu, A. S., Singh, M., & Virk, H. (1989). Geochemical exploration of uranium using radon measurement techniques. Nucl Geophy, 3, 57–69.

    CAS  Google Scholar 

  • Sahoo, B. K., Sapra, B. K., Kanse, S. D., Gware, J. J., & Mayya, Y. S. (2013). A new pinhole discrimenated 222 Rn/ 220 Rn passive measurement device with single entry face. Radiation Measurement, 58, 52–60.

    CAS  Google Scholar 

  • Salih, I., Backstrom, M., Karlsson, S., Lund, E., Pettersson, H., & B.L. . (2004). Impact of fluoride and other aquatic parameters on radon concentration in natural waters. Applied Radiation and Isotopes, 60(1), 99–104. https://doi.org/10.1016/j.apradiso.2003.10.007

    Article  CAS  Google Scholar 

  • Sandeep Kansal & Rohit Mehra. (2015). Evaluation and analysis of 226Ra, 232Th and 40K and radon exhalation rate in the soil samples for health risk assessment. International Journal of Low Radiation, 10(1), 352–357.

    Google Scholar 

  • Singh, B., Kant, K., ManeeshaGarg, A. S., Sahoo, B. K., & Sapra, B. K. (2020). Quantification of radon/thoron exhalation rates of soil samples collected from district Faridabad of Southern Haryana, India. Journal of Radioanalytical and Nuclear Chemistry, 326(1), 831–843.

    CAS  Google Scholar 

  • Singh, P., Probhjot Singh, B. K., & Sahoo & B.S. Bajwa, . (2015). A study on uranium and radon levels in drinking water sources of a mineralized zone of Himachal Pradesh, India. Journal of Radioanalytical and Nuclear Chemistry, 309, 541–549.

    Google Scholar 

  • Singla, A. K., Kansal, S., & Mehra, R. (2021a). Quantification of radon contamintaion in drinking water of Rajasthan, India. Journal of Radioanalytical and Nuclear Chemistry, 327(3), 1149–1157.

    CAS  Google Scholar 

  • Singla, A. K., Kansal, S., & Mehra, R. (2021b). Dose distribution to individual tissues and organs due to exposure of alpha energies from radon and thoron to local population of Hanumangarh, Rajasthan, India. Journal of Radioanalytical and Nuclear Chemistry, 327(3), 1073–1085.

    CAS  Google Scholar 

  • Skeppström, K., & Olofosson, B. (2007). Uranium and radon in groundwater. European Water, 17, 51–62.

    Google Scholar 

  • Stojkovie, Z. S., Svare-bGajic, J. V., Dorevic, M. Z., Grahvac, N. L., Vasin, J. R., Duorvic, A. D., & Kravic, S. Z. (2015). Study on the quality of ground, spring and river waters in South-East Serbia. Hemijska Industrija , 69, 185–192.

    Google Scholar 

  • Tanner AB (1986). Geological factors that influence radon availability, indoor radon levels, Publ. SP-54, Air Pollution control Assoc. Pittsburg, PA, 1–2.

  • Tsoulfanidis, N., & Landsberger, S. (2015). Measurement detection of radiation (4th ed.). CRC Press.

    Google Scholar 

  • UNSCEAR (2000). Report, Volume 1, Annex B: Exposure from Natural Radiations Sources.

  • UNSCEAR (2008). Report, Volume 1, Annex B: Exposure from Natural Radiations Sources.

  • USEPA (1991). Federal Register 40 parts 141 and 142; National primary Drinking Water regulations; Radionuclides; proposed Rule (U.S. Environmental Protection Agency). U.S. Government Printing Office.

  • Vesterbacka, P., Petterson, H., Hanste, U.-M., Jakobson, E., Kolstad, T., Roos, P., & Ostergren, I. (2010). Intercomparison of Rn-222 determination from groundwater. Applied Radiation and Isotopes, 68, 214–218.

    CAS  Google Scholar 

  • Virk, H. S. (2019). Uranium content anomalies in groundwater of Barnala district of Malwa belt of Punjab (India) for health risk assessment. Journal of Oncology and Hematology, 8(1), 19–26.

    Google Scholar 

  • Voronov, A. N. (2004). Radon-rich waters in Russia. Environmental Geology, 46, 630–634.

    CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality. Recommendations.

    Google Scholar 

  • WHO. (2008). WHO Guidelines for drinking-water quality. World Heal Organ Press.

    Google Scholar 

  • WHO (2009). WHO handbook on indoor radon, A health Public perspective.

  • Zhuo, W., Iida, T., & Yang, X. (2001). Occurrence of Rn-222, Ra-226, Ra-228 and U in groundwater in Fujian Province, China. Journal of Environmental Radioactivity, 53, 111–120.

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the residents of the study area for their support during field work.

Funding

Self-Financed.

Author information

Authors and Affiliations

Authors

Contributions

Research plan has been designed by Supriya Rani and Sandeep Kansal and the manuscript has been prepared with the contribution of Amit Kumar Singla and Rohit Mehra. The sample collection was carried out by Supriya Rani.

Corresponding author

Correspondence to Sandeep Kansal.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Kansal, S., Singla, A.K. et al. Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab, India. Environ Geochem Health 43, 5011–5024 (2021). https://doi.org/10.1007/s10653-021-01012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01012-y

Keywords

Navigation