Skip to main content
Log in

Microbes involved in arsenic mobilization and respiration: a review on isolation, identification, isolates and implications

  • Review paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Microorganisms play an important role in arsenic (As) cycling in the environment. Microbes mobilize As directly or indirectly, and natural/geochemical processes such as sulphate and iron reduction, oxidative sulphide mineral dissolution, arsenite (AsO33−) oxidation and arsenate (AsO43−) respiration further aid in As cycle in the environment. Arsenate serves as an electron donor for the microbes during anaerobic conditions in the sediment. The present work reviews the recent development in As contamination, various As-metabolizing microbes and their phylogenetic diversity, to understand the role of microbial communities in As respiration and mobilization. It also summarizes the contemporary understanding of the intricate biochemistry and molecular biology of natural As metabolisms. Some successful examples of engineered microbes by harnessing these natural mechanisms for effective remediation are also discussed. The study indicates that there is an exigent need to have a clear understanding of environmental aspects of As mobilization and subsequent oxidation–reduction by a suitable microbial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas, S. Z., Riaz, M., Ramzan, N., Zahid, M. T., Shakoori, F. R., & Rafatullah, M. (2014). Isolation and characterization of arsenic resistant bacteria from wastewater. Brazilian Journal of Microbiology, 45(4), 1309–1315.

    CAS  Google Scholar 

  • Achour, A. R., Bauda, P., & Billard, P. (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Research in Microbiology, 158(2), 128–137.

    CAS  Google Scholar 

  • Ajees, A. A., Yang, J., & Rosen, B. P. (1995). The ArsD As(III) metallochaperone. BioMetals, 24(3), 391–399. https://doi.org/10.1007/s10534-010-9398-x.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    CAS  Google Scholar 

  • Amaya, A. (2002). Arsenic in groundwater of alluvial aquifers in Nawalparasi and Kathmandu districts of Nepal. Masters Thesis Dept. of Land and Water Resources Engineering, Kungl Tekniska Hogskolan, Stockholm.

  • Andres, J., & Bertin, P. N. (2016). The microbial genomics of arsenic. FEMS Microbiology Reviews, 40, 299–322. https://doi.org/10.1093/femsre/fuv050.

    Article  CAS  Google Scholar 

  • ATCC. (2015). Bacterial culture guide. American Type Culture Collection. Retrieved May 2018 from https://www.atcc.org/~/media/PDFs/Culture%20Guides/ATCC_Bacterial_Culture_Guide.ashx.

  • Bachate, S. P., Cavalca, L., & Andreoni, V. (2009). Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenatereducing strains. Journal of Applied Microbiology, 107(1), 145–156.

    CAS  Google Scholar 

  • Ballantyne, J. M., & Moore, J. N. (1988). Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52, 475–483. https://doi.org/10.1016/0016-7037(88)90102-0.

    Article  CAS  Google Scholar 

  • Banerji, T., Kalawapudi, K., Salana, S., & Vijay, R. (2019). Review of processes controlling arsenic retention and release in soils and sediments of Bengal basin and suitable iron based technologies for its removal. Groundwater for Sustainable Development, 8, 358–367.

    Google Scholar 

  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27, 355–384. https://doi.org/10.1016/S0168-6445(03)00046-9.

    Article  CAS  Google Scholar 

  • Bentley, R., & Chasteen, T. G. (2002). Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiology and Molecular Biology Reviews MMBR, 66, 250–271.

    CAS  Google Scholar 

  • Besemer, K. (2015). Biodiversity, community structure and function of biofilms in stream ecosystems. Research in Microbiology, 166(10), 774–781.

    Google Scholar 

  • Bhattacharjee, H., Ghosh, M., Mukhopadhyay, R., & Rosen, B. P. (1999). Arsenic transport systems from Escherichia coli to humans. In: Symposia-society for general microbiology (pp. 58–79). Cambridge University Press.

  • Bhattacharjee, H., & Rosen, B. P. (2007). Arsenic metabolism in prokaryotic and eukaryotic microbes. In D. H. Nies & S. Silver (Eds.), Molecular microbiology of heavy metals. Microbiology monographs (Vol. 6). Berlin: Springer.

    Google Scholar 

  • Bhumbla, D. K. (1994). Aresnic mobilization and bioavailability in soils. Arsenic in the Environment. Part 1: Cycling and Character 51–82.

  • Biswas, R., Majhi, A. K., & Sarkar, A. (2019a). The role of arsenate reducing bacteria for their prospective application in arsenic contaminated groundwater aquifer system. Biocatalysis and Agricultural Biotechnology, 20, 101218.

    Google Scholar 

  • Biswas, R., & Sarkar, A. (2019). Characterization of arsenite oxidizing bacteria to decipher their role in arsenic bioremediation. Preparative Biochemistry & Biotechnology, 49(1), 30–37. https://doi.org/10.1080/10826068.2018.1476883.

    Article  CAS  Google Scholar 

  • Biswas, R., Vivekanand, V., Saha, A., Ghosh, A., & Sarkar, A. (2019b). Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. International Biodeterioration and Biodegradation, 136, 55–62.

    CAS  Google Scholar 

  • Boschetti, T., Falasca, A., Bucci, A., Felice, V. D., Naclerio, G., & Celico, F. (2014). Influence of soil on groundwater geochemistry in a carbonate aquifer, southern Italy. International Journal of Speleology, 43(1), 79–94.

    Google Scholar 

  • Bose, P., & Sharma, A. (2002). Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Research, 36, 4916–4926. https://doi.org/10.1016/S0043-1354(02)00203-8.

    Article  CAS  Google Scholar 

  • Bowell, R., Alpers, C., Jamieson, H., Nordstrom, K., & Majzlan, J. (2014). Arsenic: Environmental geochemistry, mineralogy, and microbiology. In I. Swainson (Ed.), Reviews in mineralogy and geochemistry (Vol. 79). Berlin: De Gruyter.

    Google Scholar 

  • Branco, R., Chung, A.-P., & Morais, P. V. (2008). Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiology, 8, 95. https://doi.org/10.1186/1471-2180-8-95.

    Article  CAS  Google Scholar 

  • Burgess, W. G., Hoque, M. A., Michael, H. A., Voss, C. I., Breit, G. N., & Ahmed, K. M. (2010). Vulnerability of deep groundwater in the Bengal aquifer system to contamination by arsenic. Nature Geoscience, 3, 83–87. https://doi.org/10.1038/ngeo750.

    Article  CAS  Google Scholar 

  • Castro, M., & Sancha, A. M. (2001). Arsenic contamination in the world (pp. 87–96) Amsterdam: Elsevier.

    Google Scholar 

  • Cavalca, L., Zecchin, S., Zaccheo, P., Abbas, B., Rotiroti, M., Bonomi, T., et al. (2019). Exploring biodiversity and arsenic metabolism of microbiota inhabiting arsenic-rich groundwaters in Northern Italy. Frontiers in Microbiology, 10, 1480. https://doi.org/10.3389/fmicb.2019.01480.

    Article  Google Scholar 

  • Chang, F. J., Liao, V. H. C., Chu, Y. J., Su, Y. C., Hsiao, S. Y., Wei, C. C., Liu, C. W., Liao, C. M., & Shen, W. C. (2011). Arsenite-oxidizing and arsenatereducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of Contaminant Hydrology, 123(1–2), 20–29.

    Google Scholar 

  • Chen, Z., Wang, Y., Jiang, X., Fu, D., Xia, D., Wang, H., et al. (2017a). Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. Science of the Total Environment, 574, 1684–1694.

    CAS  Google Scholar 

  • Chen, X., Zeng, X. C., Kawa, Y. K., Wu, W., Zhu, X., Ullah, Z., et al. (2019). Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. Ecotoxicology and Environmental Safety, 189, 109946. https://doi.org/10.1016/j.ecoenv.2019.109946.

    Article  CAS  Google Scholar 

  • Chen, X., Zeng, X.-C., Wang, J., Deng, Y., Ma, T., Guoji, E., et al. (2017b). Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain, Central China. Science of the Total Environment, 579, 989–999. https://doi.org/10.1016/j.scitotenv.2016.11.024.

    Article  CAS  Google Scholar 

  • Choprapwon, C., & Porapakkham, Y. (2016). Arsenic: Exposure and health effects IV. In W. R. Cambell, C. O. Abernathy, & R. L. Calderon (Eds.), Consequences of acute and chronic exposure to arsenic in children (pp. 201–216). Amsterdam: Elsevier.

    Google Scholar 

  • Crognale, S., Casentini, B., Amalfitano, S., Fazi, S., Petruccioli, M., & Rossetti, S. (2019). Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Science of the Total Environment, 651, 93–102.

    CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764. https://doi.org/10.1021/cr00094a002.

    Article  CAS  Google Scholar 

  • Das, S., Bora, S. S., Yadav, R. N. S., & Barooah, M. (2017a). A metagenomic approach to decipher the indigenous microbial communities of arsenic contaminated groundwater of Assam. Genomics Data, 12, 89–96.

    Google Scholar 

  • Das, N., Das, A., Sarma, K. P., & Kumar, M. (2018). Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere, 194, 755–772.

    CAS  Google Scholar 

  • Das, A., & Kumar, M. (2015). Arsenic enrichment in the groundwater of Diphu, Northeast India: coupled application of major ion chemistry, speciation modeling, and multivariate statistical techniques. CLEAN–Soil, Air, Water, 43(11), 1501–1513.

    CAS  Google Scholar 

  • Das, N., Sarma, K. P., Patel, A. K., Deka, J. P., Das, A., Kumar, A., et al. (2017b). Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India. Environmental Earth Sciences, 76, 183. https://doi.org/10.1007/s12665-017-6488-x.

    Article  CAS  Google Scholar 

  • Dehbandi, R., Abbasnejad, A., Karimi, Z., Herath, I., & Bundschuh, J. (2019). Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Environmental Pollution, 249, 910–922.

    CAS  Google Scholar 

  • Dey, U., Chatterjee, S., & Mondal, N. K. (2016). Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnology Reports. https://doi.org/10.1016/j.btre.2016.02.002.

    Article  Google Scholar 

  • Diorio, C., Cai, J., Marmor, J., Shinder, R., & DuBow, M. S. (1995). An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. Journal of Bacteriology, 177(8), 2050–2056. https://doi.org/10.1128/jb.177.8.2050-2056.1995.

    Article  CAS  Google Scholar 

  • Dolphen, R., & Thiravetyan, P. (2019). Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria. Chemosphere, 223, 448–454.

    CAS  Google Scholar 

  • Drewniak, L., Matlakowska, R., Rewerski, B., & Sklodowska, A. (2010). Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy, 104(3–4), 437–442.

    CAS  Google Scholar 

  • Drobná, Z., Xing, W., Thomas, D. J., & Stýblo, M. (2006). shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells. Chemical Research in Toxicology, 19, 894–898.

    Google Scholar 

  • Duker, A. A., Carranza, E. J. M., & Hale, M. (2005). Arsenic geochemistry and health. Environment International, 31, 631–641. https://doi.org/10.1016/j.envint.2004.10.020.

    Article  CAS  Google Scholar 

  • Dunivin, T. K., Miller, J., & Shade, A. (2018). Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire. PLoS ONE, 13(1), e0191893.

    Google Scholar 

  • Eichorst, S. A., Breznak, J. A., & Schmidt, T. M. (2007). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum acidobacteria. Applied Environmental Microbiology, 73, 2708–2717.

    CAS  Google Scholar 

  • Fan, H., Su, C., Wang, Y., Yao, J., Zhao, K., Wang, Y., et al. (2008). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Journal of Applied Microbiology, 105, 529–539. https://doi.org/10.1111/j.1365-2672.2008.03790.x.

    Article  CAS  Google Scholar 

  • Gans, J., Wolinsky, M., & Dunbar, J. (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.

    CAS  Google Scholar 

  • Gladysheva, T. B., Oden, K. L., & Rosen, B. P. (1994). Properties of the arsenate reductase of plasmid R773. Biochemistry (Mosc.), 33, 7288–7293. https://doi.org/10.1021/bi00189a033.

    Article  CAS  Google Scholar 

  • Gnanaprakasam, E. T., Lloyd, J. R., Boothman, C., Ahmed, K. M., Choudhury, I., Bostick, B. C., et al. (2017). Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh. mBio, 8, e01326-17. https://doi.org/10.1128/mbio.01326-17.

    Article  CAS  Google Scholar 

  • Goswami, R., Kumar, M., Biyani, N., & Shea, P. J. (2020). Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India. Environmental Geochemistry and Health, 42, 443–460. https://doi.org/10.1007/s10653-019-00373-9.

    Article  CAS  Google Scholar 

  • Gu, Y., Wang, Y., Sun, Y., Zhao, K., Xiang, Q., Yu, X., et al. (2018). Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BMC Microbiology, 18(1), 42.

    Google Scholar 

  • Guo, H., Liu, Z., Ding, S., Hao, C., Xiu, W., & Hou, W. (2015). Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environmental Pollution, 203, 50–59. https://doi.org/10.1016/j.envpol.2015.03.034.

    Article  CAS  Google Scholar 

  • Guo, W., Wang, H., Zhao, W., Zhu, J., Ju, B., & Wang, X. (2001). Effect of all-trans retinoic acid and arsenic trioxide on tissue factor expression in acute promyelocytic leukemia cells. Chinese Medical Journal, 114(1), 30–34.

    CAS  Google Scholar 

  • Gurzau, E. S., & Gurzau, A. E. (2001). In W. R. Cambell, C. O. Abernathy, & R. L. Calderon (Eds.), Arsenic: Exposure and health effects IV (pp. 181–184). Amsterdam: Elsevier.

    Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606. https://doi.org/10.1126/science.1076978.

    Article  CAS  Google Scholar 

  • Huang, J. H. (2014). Impact of microorganisms on arsenic biogeochemistry: A review. Water, Air, and Soil pollution, 225, 1848. https://doi.org/10.1007/s11270-013-1848-y.

    Article  CAS  Google Scholar 

  • Huber, R., Sacher, M., Vollmann, A., Huber, H., & Rose, D. (2000). Respiration of arsenate and selenate by hyperthermophilic archaea. Systematic and Applied Microbiology, 23, 305–314.

    CAS  Google Scholar 

  • Inskeep, W. P., Macur, R. E., Hamamura, N., Warelow, T. P., Ward, S. A., & Santini, J. M. (2008). Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environmental Microbiology, 9, 934–943.

    Google Scholar 

  • Jackson, C. R., & Dugas, S. L. (2003). Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evolutionary Biology, 3, 18. https://doi.org/10.1186/1471-2148-3-18.

    Article  Google Scholar 

  • Jackson, C. R., Dugas, S. L., & Harrison, K. G. (2005). Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biology and Biochemistry, 37, 2319–2322.

    CAS  Google Scholar 

  • Jackson, C. R., Langner, H. W., Donahoe-Christiansen, J., Inskeep, W. P., & McDermott, T. R. (2001). Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environmental Microbiology, 3, 532–542.

    CAS  Google Scholar 

  • JoVE. (2019). Science education database. In: Environmental microbiology. Culturing and Enumerating Bacteria from Soil Samples. Cambridge, MA: JoVE.

  • Katrin, S. S., Banerjee, A., & Wade, W. G. (2014). Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrosequencing for the characterization of the dentine caries-associated microbiome. Frontiers in Cellular and Infection Microbiology, 4, 164. https://doi.org/10.3389/fcimb.2014.00164.

    Article  CAS  Google Scholar 

  • Kawa, Y. K., Wang, J., Chen, X., Zhu, X., Zeng, X. C., & Wang, Y. (2019). Reductive dissolution and release of arsenic from arsenopyrite by a novel arsenate-respiring bacterium from the arsenic-contaminated soils. International Biodeterioration and Biodegradation, 143, 104712.

    CAS  Google Scholar 

  • Khatri, N., & Tyag, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716.

    Article  CAS  Google Scholar 

  • Khuntia, S., Majumder, S. K., & Ghosh, P. (2014). Oxidation of As(III) to As(V) using ozone microbubbles. Chemosphere, 97, 120–124.

    CAS  Google Scholar 

  • Kim, M.-J., & Nriagu, J. (2000). Oxidation of arsenite in groundwater using ozone and oxygen. Science of the Total Environment, 247, 71–79. https://doi.org/10.1016/S0048-9697(99)00470-2.

    Article  CAS  Google Scholar 

  • Kondo, H., Ishiguro, Y., Ohno, K., Nagase, M., Toba, M., & Takagi, M. (1999). Naturally occurring arsenic in the groundwaters in the southern region of Fukuoka Prefecture, Japan. Water Research, 33, 1967–1972.

    CAS  Google Scholar 

  • Kostal, J., Yang, R., Wu, C. H., Mulchandani, A., & Chen, W. (2004). Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Applied and Environment Microbiology, 70, 4582–4587. https://doi.org/10.1128/AEM.70.8.4582-4587.2004.

    Article  CAS  Google Scholar 

  • Krupp, E. M., Grümping, R., Furchtbar, U. R. R., & Hirner, A. V. (1996). Speciation of metals and metalloids in sediments with LTGC/ICP-MS. Fresenius Journal of Analytical Chemistry, 354, 546–549. https://doi.org/10.1007/s0021663540546.

    Article  CAS  Google Scholar 

  • Kudo, K., Yamaguchi, N., Makino, T., Ohtsuka, T., Kimura, K., Dong, D. T., et al. (2013). Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, anaeromyxobacter sp. Strain PSR-1. Applied and Environmental Microbiology, 79, 4635–4642. https://doi.org/10.1128/AEM.00693-13.

    Article  CAS  Google Scholar 

  • Kuehnelt, D., Goessler, W., Irgolic, K.J., 1997. Arsenic Compounds in Terrestrial Organisms II: Arsenocholine in the Mushroom Amanita muscaria. Appl. Organomet. Chem. 11, 459–470. https://doi.org/10.1002/(sici)1099-0739(199706)11:6%3c459:aidaoc583%3e3.0.co;2-o.

  • Kuhn, A., & Sigg, L. (1993). Arsenic cycling in eutrophic Lake Greifen, Switzerland: Influence of seasonal redox processes. Limnology and Oceanography, 38, 1052–1059. https://doi.org/10.4319/lo.1993.38.5.1052.

    Article  CAS  Google Scholar 

  • Kulp, T. R. (2014). Early earth: Arsenic and primordial life. Nature Geoscience, 7, 785–786. https://doi.org/10.1038/ngeo2275.

    Article  CAS  Google Scholar 

  • Kumar, M. (2016). Understanding the remobilization of copper, zinc, cadmium and lead due to ageing through sequential extraction and isotopic exchangeability. Environmental Monitoring and Assessment, 188(6), 381.

    Google Scholar 

  • Kumar, M., Das, A., Das, N., Goswami, R., & Singh, U. K. (2016a). Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere, 150, 227–238.

    CAS  Google Scholar 

  • Kumar, M., Das, N., Goswami, R., Sarma, K. P., Bhattacharya, P., & Ramanathan, A. L. (2016b). Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system. Chemosphere, 164, 657–667.

    CAS  Google Scholar 

  • Kumar, M., Gogoi, A., Kumari, D., Borah, R., Das, P., Mazumder, P., et al. (2017a). Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment. Journal of Hazardous Toxic and Radioactive Waste, 21(4), 04017007.

    Google Scholar 

  • Kumar, M., Kumar, P., Ramanathan, A. L., Bhattacharya, P., Thunvik, R., Singh, U. K., et al. (2010). Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. Journal of Geochemical Exploration, 105, 83–94.

    CAS  Google Scholar 

  • Kumar M., Goswami, R., Patel, A. K., Srivastava, M., & Das, N. (2020). Scenario, perspective and mechanism of arsenic and fluoride co-occurrence in the groundwater: A critical Review.Chemosphere, 249. https://doi.org/10.1016/j.chemosphere.2020.126126.

  • Kumar, M., Patel, A. K., Das, A., Das, N., & Goswami, R. (2017b). Comparative understanding of arsenic enrichment and mobilization in the aquifers of the river Ganges and Brahmaputra: A provenance. Prevalence and Health Perspective. https://doi.org/10.1130/abs/2017AM-308056.

    Article  Google Scholar 

  • Kumar, M., Patel, A. K., Das, A., Kumar, P., Goswami, R., Deka, P., et al. (2017c). Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environmental Geochemistry and Health, 39, 161–178. https://doi.org/10.1007/s10653-016-9816-2.

    Article  CAS  Google Scholar 

  • Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman, C. U., Jr., Trakal, L., et al. (2019). Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 694, 133427.

    CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Mukherjee, A., Verma, S., Rahman, A. A., & Naidu, R. (2018). Hydrogeo-morphological influences for arsenic release and fate in the central Gangetic Basin, India. Environmental Technology and Innovation, 12, 243–260.

    Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039. https://doi.org/10.1007/s00254-006-0275-4.

    Article  CAS  Google Scholar 

  • Kurttio, P., Komulainen, H., Hakala, E., Kahelin, J., & Pekkanen, J. (1998). Urinaryex-cretion of arsenic species after exposure to arsenic present in drinking water. Archives of Environmental Contamination and Toxicology, 34, 297–305.

    CAS  Google Scholar 

  • Langner, H. W., & Inskeep, W. P. (2000). Microbial reduction of arsenate in the presence of ferrihydrite. Environmental Science and Technology, 34(15), 3131–3136. https://doi.org/10.1021/es991414z.

    Article  CAS  Google Scholar 

  • Lear, G., Song, B., Gault, A. G., Polya, D. A., & Lloyd, J. R. (2006). Molecular analysis of arsenate-reducing bacteria within cambodian sediments following amendment with acetate. Applied and Environmental Microbiology, 73, 1041–1048. https://doi.org/10.1128/AEM.01654-06.

    Article  CAS  Google Scholar 

  • Lens, P., O’Flaherty, V., Moran, A. P., Stoodley, P., & Mahony, T. (2007). Biofilms in medicine, industry and environmental biotechnology-characteristics, analysis and control (Vol. 6). London: IWA Publishing. https://doi.org/10.2166/9781780402161.

    Book  Google Scholar 

  • Li, P., Wang, Y., Dai, X., Zhang, R., Jiang, Z., Jiang, D., et al. (2015). Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PLoS ONE, 10, e0125844. https://doi.org/10.1371/journal.pone.0125844.

    Article  CAS  Google Scholar 

  • Lis, P., Litwin, I., & Maciaszczyk-Dziubińska, E. (2010). Pathways of arsenic uptake in prokaryotic and eukaryotic cells. Postepy Biochemii, 56(4), 400–408.

    Google Scholar 

  • Liu, S., Zhang, F., Chen, J., & Sun, G. (2011). Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. Journal of Environmental Sciences, 23(9), 1544–1550.

    CAS  Google Scholar 

  • Madden, T. (2013). The BLAST sequence analysis tool. In: The NCBI Handbook [Internet] 2nd edn. Bethesda, MD: National Center for Biotechnology Information (US); https://www.ncbi.nlm.nih.gov/books/NBK153387/.

  • Maezato, Y., Blum, P., Maezato, Y., & Blum, P. (2012). Survival of the fittest: Overcoming oxidative stress at the extremes of acid, heat and metal. Life, 2, 229–242. https://doi.org/10.3390/life2030229.

    Article  CAS  Google Scholar 

  • Mahimairaja, S., Bolan, N. S., Adriano, D. C., & Robinson, B. (2005). Arsenic contamination and its risk management in complex environmental settings. Advances in Agronomy, 86, 1–82.

    CAS  Google Scholar 

  • Majumdar, P. K., Ghosh, N. C., & Chakravorty, B. (2002). Analysis of arsenic-contaminated groundwater domain in the Nadia district of West Bengal (India). Hydrological Sciences Journal, 47, S55–S66. https://doi.org/10.1080/02626660209493022.

    Article  CAS  Google Scholar 

  • Malasarn, D., Keeffe, J. R., & Newman, D. K. (2008). Characterization of the arsenate respiratory reductase from Shewanella sp. Strain ANA-3. Journal of Bacteriology, 190, 135–142. https://doi.org/10.1128/JB.01110-07.

    Article  CAS  Google Scholar 

  • Manzoor, M., Abid, R., Rathinasabapathi, B., Oliveira, L. M. D., Silva, E. D., Deng, F., et al. (2019). Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Science of the Total Environment, 660, 18–24.

    CAS  Google Scholar 

  • Martin, W., Baross, J., Kelley, D., & Russell, M. J. (2008). Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6, 805–814. https://doi.org/10.1038/nrmicro1991.

    Article  CAS  Google Scholar 

  • Matisoff, G., Khourey, C. J., Hall, J. F., Varnes, A. W., & Strain, W. H. (1982). The nature and source of arsenic in northeastern Ohio groundwater. Ground Water, 20, 446–456.

    CAS  Google Scholar 

  • Mehrzad, J., Mahmudy Gharaie, M. H., & Taheri, M. (2017). Effects of arsenic on porcine dendritic cells in vitro. Journal of Immunotoxicology, 14(1), 1–8.

    CAS  Google Scholar 

  • Michael, H. A., & Voss, C. I. (2008). Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proceedings of National Academy of Sciences, 105, 8531–8536. https://doi.org/10.1073/pnas.0710477105.

    Article  Google Scholar 

  • Mishra, T., & Mahato, D. K. (2016). A comparative study on enhanced arsenic(V) and arsenic(III) removal by iron oxide and manganese oxide pillared clays from ground water. Journal of Environmental Chemical Engineering, 4(1), 1224–1230.

    CAS  Google Scholar 

  • Morton, W., Starr, G., Pohl, D., Stoner, J., Wagner, S., & Weswig, P. (1976). Skin cancer and water arsenic in lane county, Oregon. Cancer 37, 2523–2532. https://doi.org/10.1002/1097-0142(197605)37:5%3c2523:AID-CNCR2820370545%3e3.0.CO;2-B.

  • Muehe, E. M., Morin, G., Scheer, L., Pape, P. L., Esteve, I., Daus, B., et al. (2016). Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Environmental Science and Technology, 50, 2281–2291. https://doi.org/10.1021/acs.est.5b04625.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, R., & Rosen, B. P. (2002). Arsenate reductases in prokaryotes and eukaryotes. Environmental Health Perspectives, 110(suppl 5), 745–748.

    CAS  Google Scholar 

  • National Research Council (US). (1977). Committee on medical and biological effects of environmental pollutants. In: Arsenic: Medical and biologic effects of environmental pollutants. Washington, DC: National Academies Press (US); 1977. 2, Chemistry of Arsenic. Retrieved May 2018 from https://www.ncbi.nlm.nih.gov/books/NBK231019/.

  • Newman, D. K., Ahmann, D., & Morel, F. M. M. (1998). A brief review of microbial arsenate respiration. Geomicrobiology Journal, 15(4), 255–268. https://doi.org/10.1080/01490459809378082.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgees, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    CAS  Google Scholar 

  • Nicolli, H. B., Suriano, J. M., & Gomez, P. (1989). Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Cordoba, Argentina. Environmental Geology and Water Sciences, 14, 3–16.

    CAS  Google Scholar 

  • Ohtsuka, T., Yamaguchi, N., Makino, T., Sakurai, K., Kimura, K., Kudo, K., et al. (2013). Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium geobacter sp. OR-1. Environmental Science and Technology, 47, 6263–6271. https://doi.org/10.1021/es400231x.

    Article  CAS  Google Scholar 

  • Omwene, P. I., Çelen, M., Öncel, M. S., & Kobya, M. (2019). Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes. Process Safety and Environmental Protection, 121, 20–31.

    CAS  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944. https://doi.org/10.1126/science.1081903.

    Article  CAS  Google Scholar 

  • Osborne, T. H., McArthur, J. M., Sikdar, P. K., & Santini, J. M. (2015). Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin. Environmental Science and Technology, 49, 4193–4199. https://doi.org/10.1021/es504707x.

    Article  CAS  Google Scholar 

  • Patel, A. K., Das, N., Goswami, R., & Kumar, M. (2019a). Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the Upper Brahmaputra floodplain, Lakhimpur, Assam, India. Journal of Geochemical Exploration, 203, 45–58. https://doi.org/10.1016/j.gexplo.2019.04.004.

    Article  CAS  Google Scholar 

  • Patel, A. K., Das, N., & Kumar, M. (2019b). Multilayer arsenic mobilization and multimetal co-enrichment in the alluvium (Brahmaputra) plains of India: A tale of redox domination along the depth. Chemosphere, 224, 140–150. https://doi.org/10.1016/j.chemosphere.2019.02.097.

    Article  CAS  Google Scholar 

  • Paul, P. K., & Sikdar, P. K. (2008). Assessment and management of groundwater resources of English Bazar block, Malda district, West Bengal. Unpublished Report of Department of Science and Technology, New Delhi.

  • Pidwirny, M. (2006). Weathering, fundamentals of physical geography, 2nd edn. Retrieved July 8, 2010, from http://physicalgeography.net/fundamentals/10r.html.

  • Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505–508. https://doi.org/10.1038/nature07093.

    Article  CAS  Google Scholar 

  • Qin, J., Rosen, B. P., Zhang, Y., Wang, G., Franke, S., & Rensing, C. (2006). Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of National Academy of Sciences, 103, 2075–2080. https://doi.org/10.1073/pnas.0506836103.

    Article  CAS  Google Scholar 

  • Quéméneur, M., Hamelin, J., Latrille, E., Steyer, J.-P., & Trably, E. (2011). Functional versus phylogenetic fingerprint analyses for monitoring hydrogen-producing bacterial populations in dark fermentation cultures. International Journal of Hydrogen Energy, 36, 3870–3879. https://doi.org/10.1016/j.ijhydene.2010.12.100.

    Article  CAS  Google Scholar 

  • Rahman, M. A., & Hassler, C. (2014). Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquatic Toxicology, 146, 212–219.

    CAS  Google Scholar 

  • Rascovan, N., Maldonado, J., & Vazquez, M. P. (2015). Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloachaea. ISME Journal. https://doi.org/10.1038/ismej.2015.109.

    Article  Google Scholar 

  • Rathod, J., Jean, J. S., Jiang, W. T., Huang, I. H., Liu, B. H., & Lee, Y. C. (2019). Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub subsurface mimicking conditions. Science of the Total Environment, 669, 527–539.

    CAS  Google Scholar 

  • Razo, L. M. D., Arellano, M. A., & Cebrian, M. E. (1990). The oxidation states of arsenic in well-water from a chronic arsenic is area of Northern Mexico. Environmental Pollution, 64, 143–153.

    Google Scholar 

  • Richards, L. A., Magnone, D., Boyce, A. J., Casanueva-Marenco, M. J., van Dongen, B. E., Ballentine, C. J., et al. (2018). Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models. Journal of Hydrology, 557, 321–334.

    CAS  Google Scholar 

  • Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Letters, 529(1), 86–92.

    CAS  Google Scholar 

  • Rousk, J., & Bengtson, P. (2014). Microbial regulation of global biogeochemical cycles. Front Microbiology, 2014(5), 103.

    Google Scholar 

  • Salam, M. A., Hossain, M. S., Ali, M. E., Asad, M. A., & Ali, M. H. (2009). Isolation and characterization of arsenic resistant bacteria from different environment in South-West region of Bangladesh. Research Journal of Environmental Sciences, 3, 110–115.

    Google Scholar 

  • Sambrook, J., Fritschi, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratorymanual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sancha, A. M., & Castro, M. L. (2001). Arsenic: Exposure and health effects IV. In: Cambell R. L., Abernathy, C. O., Calderon, R. L. (eds.) Titled arsenic contamination in the world (pp. 87–96). Amsterdam: Elsevier.

    Google Scholar 

  • Sanders, E. R. (2012). Aseptic laboratory techniques: Plating methods. Journal of Visualized Experiments, 63, 3064.

    Google Scholar 

  • Satyapal, G. K., Mishra, S. K., Srivastava, A., Ranjan, R. K., Prakash, K., Haque, R., et al. (2018). Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnology Reports, 17, 117–125.

    Google Scholar 

  • Sauge-Merle, S., Cuine, S., Carrier, P., Lecomte-Pradines, C., Luu, D. T., & Peltier, G. (2003). Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Applied and Environment Microbiology, 69, 490–494. https://doi.org/10.1128/AEM.69.1.490-494.2003.

    Article  CAS  Google Scholar 

  • Saunders, J. K., Fuchsman, C. A., McKay, C., & Rocap, G. (2019). Complete arsenic based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. PNAS, 116, 9925–9930.

    CAS  Google Scholar 

  • Saunders, J. A., Lee, M. K., Uddin, A., Mohammad, S., Wilkin, R. T., Fayek, M., et al. (2005). Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2004GC000803.

    Article  Google Scholar 

  • Schimel, J. P., & Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012(3), 348.

    Google Scholar 

  • Sharma, P., Rolle, M., Kocar, B., Fendorf, S., & Kappler, A. (2011). Influence of natural organic matter on As transport and retention. Environmental Science and Technology, 45(2), 546–553.

    CAS  Google Scholar 

  • Shrestha, R. R., Shrestha, M. P., Upadhay, N. P., Pradhan, R., Khadka, R. A. (2003). Arsenic: Exposure and health effects IV. In: Cambell, W. R., Abernathy, C. O., Calderon, R. L. (eds.) Arsenic in drinking water and food (pp. 25–37). Amsterdam: Elsevier.

    Google Scholar 

  • Singh, A., Patel, A. K., Deka, J. P., Das, A., Kumar, A., & Manish Kumar. (2019). Prediction of arsenic vulnerable zones in groundwater environment of rapidly urbanizing setup, Guwahati, India. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125590.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. https://doi.org/10.1016/s0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Sohrin, Y., Matsui, M., Kawashima, M., Hojo, M., & Hasegawa, H. (1997). Arsenic biogeochemistry affected by eutrophication in Lake Biwa, Japan. Environmental Science and Technology, 31, 2712–2720. https://doi.org/10.1021/es960846w.

    Article  CAS  Google Scholar 

  • Song, B., Chyun, E., Jaffé, P. R., & Ward, B. B. (2009). Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiology Ecology, 68, 108–111.

    CAS  Google Scholar 

  • Sorlini, S., & Gialdini, F. (2010). Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Research, 44(19), 5653–5659.

    CAS  Google Scholar 

  • Stauder, S., Raue, B., & Sacher, F. (2005). Thioarsenates in sulfidic waters. Environmental Science and Technology, 39, 5933–5939. https://doi.org/10.1021/es048034k.

    Article  CAS  Google Scholar 

  • Stetter, K. O., Fiala, G., Huber, G., Huber, R., & Segerer, A. (1990). Hyperthermophilic microorganisms. FEMS Microbiology Letters, 75, 117–124. https://doi.org/10.1111/j.1574-6968.1990.tb04089.x.

    Article  Google Scholar 

  • Stolze, L., Zhang, D., Guo, H., & Rolle, M. (2019). Model-based interpretation of groundwater arsenic mobility during in situ reductive transformation of ferrihydrite. Environmental Science and Technology, 53, 6845–6854.

    CAS  Google Scholar 

  • Stuckey, J. W., Schaefer, M. V., Kocar, B. D., Benner, S. G., & Fendorf, S. (2016). Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 9, 70–76. https://doi.org/10.1038/ngeo2589.

    Article  CAS  Google Scholar 

  • Sultana, M., Vogler, S., Zargar, K., Schmidt, A. C., Saltikov, C., & Seifert, J. (2012). New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Archives of Microbiology, 194(7), 623–635.

    CAS  Google Scholar 

  • Sun, X., Li, B., Han, F., Xiao, E., Xiao, T., & Sun, W. (2018). Impacts of arsenic and antimony co-contamination on sedimentary microbial communities in rivers with different pollution gradients. Microbial Ecology, 78, 589–602. https://doi.org/10.1007/s00248-019-01327-5.

    Article  CAS  Google Scholar 

  • Sun, Y., Polishchuk, E. A., Radoja, U., & Cullen, W. R. (2004). Identification and quantification of arsC genes in environmental samples by using real-time PCR. Journal of Microbiological Methods, 58(3), 335–349.

    CAS  Google Scholar 

  • Taheri, M., Gharaie, M. H. M., Mehrzad, J., Afshari, R., & Datta, S. (2017). Hydrogeochemical and isotopic evaluation of arsenic contaminated waters in an argillic alteration zone. Journal of Geochemical Exploration, 175, 1–10.

    CAS  Google Scholar 

  • Taheri, M., Mehrzad, J., Gharaie, M. H. M., Afshari, R., Dadsetan, A., & Hami, S. (2016). High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran. Environmental Geochemistry and Health, 38(2), 469–482.

    CAS  Google Scholar 

  • Takacs-vesbach, C., Inskeep, W. P., Jay, Z. J., Herrgard, M. J., Rusch, D. B., Tringe, S. G., et al. (2013). Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three aquificales lineages. Frontiers in Microbiology, 4, 84. https://doi.org/10.3389/fmicb.2013.00084.

    Article  CAS  Google Scholar 

  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. https://doi.org/10.1155/2011/939161.

    Article  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. NIH PA EXS, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6.

    Article  Google Scholar 

  • United Nations. (2016). Synthesis report on arsenic in drinking water.

  • van Lis, R., Nitschke, W., & Duval, S. (2013). Arsenics as bioenergetic substrates. Biochimica et Biophysica Acta, 1827, 176–188.

    Google Scholar 

  • Van Phan, T. H., Bonnet, T., Garambois, S., Tisserand, D., Bardelli, F., Bernier-Latmani, R., et al. (2017). Arsenic in shallow aquifers linked to the electrical ground conductivity: The mekong delta source example. Geosciences Research, 2, 180–195. https://doi.org/10.22606/gr.2017.23004.

    Article  Google Scholar 

  • Verma, S., Verma, P. K., & Chakrabarty, D. (2019). Arsenic bio-volatilization by engineered yeast promotes rice growth and reduces arsenic accumulation in grains. International Journal of Environmental Research, 13, 475–485. https://doi.org/10.1007/s41742-019-00188-7.

    Article  CAS  Google Scholar 

  • Villadangos, A. F., Ordóñez, E., Pedre, B., Messens, J., Gil, J. A., & Mateos, L. M. (2014). Engineered coryneform bacteria as a bio-tool for arsenic remediation. Applied Microbiology and Biotechnology, 98, 10143–10152. https://doi.org/10.1007/s00253-014-6055-2.

    Article  CAS  Google Scholar 

  • Wang, Q., Han, Y., Shi, K., Fan, X., Wang, L., Li, M., et al. (2017). An oxidoreductase AioE is responsible for bacterial arsenite oxidation and resistance. Scientific Reports, 7, 41536. https://doi.org/10.1038/srep41536.

    Article  CAS  Google Scholar 

  • Welch, A. H., Lico, M. S., & Hughes, J. L. (1988). Arsenic in ground water of the western United States. Ground Water, 26, 333–347.

    CAS  Google Scholar 

  • WHO. (2017). Guidelines for drinking water quality (4th edn with 1st addendum). Geneva: WHO.

  • Wilkin, R. T., Wallschläger, D., & Ford, R. G. (2003). Speciation of arsenic in sulfidic waters. Geochemical Transactions, 4, 1. https://doi.org/10.1186/1467-4866-4-1.

    Article  Google Scholar 

  • Wilkins, L. G. E., Ettinger, C. L., Jospin, G., & Eisen, J. A. (2018). Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal pools in Kamchatka, Russia. Scientific reports., 9, 3059. https://doi.org/10.1038/s41598-019-39576-6.

    Article  CAS  Google Scholar 

  • Williams, M., Fordyce, F., Paijiiprapapon, A., & Charoenchaisri, P. (1996). Arsenic contamination in surface drainage and groundwater in part of the south east Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environmental Geology, 27, 16–33.

    CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., & Singh, S. (2015). Reductive dissolution of iron-oxyhydroxides directs groundwater arsenic mobilization in the upstream of Ganges River basin, Nepal. Journal of Geochemical Exploration, 148, 150–160.

    CAS  Google Scholar 

  • Yan, G., Chen, X., Du, S., Deng, Z., Wang, L., & Chen, S. (2019). Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Current Genetics, 65, 329–338. https://doi.org/10.1007/s00294-018-0894-9.

    Article  CAS  Google Scholar 

  • Yang, H. C., Fu, H. L., Lin, Y. F., & Rosen, B. P. (2012). Pathways of arsenic uptake and efflux. Current Topics in Membranes, 69, 325–358. https://doi.org/10.1016/B978-0-12-394390-3.00012-4.

    Article  CAS  Google Scholar 

  • Yinlong, J. (2015). Progress on arsenic in China. In: Kabuto, M. (Ed.), Proceedings of the first international workshop on arsenic pollution of drinking water in South Asia and China (pp. 35–39). Tokyo: National Institute of Environmental Studies, R-166-201.

  • Zaman, A. K. B. (2019). Isolation and characterization of arsenic resistant soil bacteria. International Journal of Science and Research Methodology, 9(2), 234–237.

    Google Scholar 

  • Zargar, K., Conrad, A., & Bernick, D. L. (2012). ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environmental Microbiology, 14, 1635–1645.

    CAS  Google Scholar 

  • Zhong, C., Han, M., Yang, P., Chen, C., Yu, H., Wang, L., et al. (2019). Comprehensive analysis reveals the evolution and pathogenicity of Aeromonas, viewed from both single isolated species and microbial communities. mSystems, 4(5), 00252-19. https://doi.org/10.1128/msystems.00252-19.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Yoshinaga, M., Zhao, F.-J., & Rosen, B. P. (2014). Earth abides arsenic biotransformations. Annual Review of Earth and Planetary Sciences, 42, 443–467. https://doi.org/10.1146/annurev-earth-060313-054942.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., & Katsoyiannis, I. A. (2005). Recent advances in the bioremediation of arsenic-contaminated groundwater. Environment International, 31, 213–219. https://doi.org/10.1016/j.envint.2004.09.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by GSBTM Research Support Scheme. Subhash Kumar Sharma stayed and worked on this manuscript under IIT Gandhinagar Summer Research Internship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, P., Sharma, S.K., Taki, K. et al. Microbes involved in arsenic mobilization and respiration: a review on isolation, identification, isolates and implications. Environ Geochem Health 42, 3443–3469 (2020). https://doi.org/10.1007/s10653-020-00549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00549-8

Keywords

Navigation