Skip to main content
Log in

Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Caco-2 cell line is derived from a human colon adenocarcinoma and is generally used in toxicity assays. The ingestion of soil or dust is a significant route of human exposure to potential harmful elements (PHE), and assays of bioaccessibility or bioavailability can be used to measure the potential hazard posed by exposure to toxic substances. The in vitro digestion (UBM method) and Caco-2 cell model were used to investigate the bioaccessibility and absorption by intestinal cells of the PHE in four matrices (two urban soils and two soils with lead (Pb)—mining tailings) along with the guidance material for bioaccessibility measurements, BGS 102. The gastrointestinal (GI) compartment was simulated, and the resulting material added to Caco-2 cells. In the GI, the average bioaccessibility was 24% for cadmium (Cd), 17% for copper (Cu), 0.2% for Pb, 44% for manganese (Mn) and 6% for zinc (Zn). The poor reproducibility was attributed to the pH (6.3) and the highly complex GI fluid that formed PHE precipitates and complexes. In 2 h, Caco-2 cells absorbed 0.2 ng mg−1 of cellular protein for Cd, 13.4 ng mg−1 for Cu, 5 ng mg−1 for Mn and 31.7 µg mg−1 for Zn. Lead absorption was lower than the limit of quantification (< 2 µg L−1). Cd was presented in the cell monolayer and could interfere in the intracellular accumulation of Cu, Mn and Zn. The use of in vitro assays allowed for an estimation of the absorption of Cd, Cu, Mn and Zn from environmental matrices to be made, and except for Mn, it had a positive correlation with bioaccessible concentration, suggesting a common association of these elements in the cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu, C. A., Van Raij, B., Abreu, M. F., & Gonzalez, A. P. (2004). Avaliação da disponibilidade de manganês e ferro em solos pelo uso do método modificado da resina de troca iônica. Revista Brasileira de Ciência do Solo,28, 279–584. (in Portuguese).

    Google Scholar 

  • Anderson, J. M., & Ingram, J. S. I. (1993). Chemical analyses. In J. M. Anderson & J. S. I. Ingram (Eds.), Tropical soil biology and fertility: A handbook of methods (2nd ed., pp. 57–92). Wallingford, UK: CAB International.

    Google Scholar 

  • Angelone, M., & Udovic, M. (2014). Potentially harmful elements in urban soils. In C. Bini & J. Bech (Eds.), PHEs, environment and human health: Potentially harmful elements in the environment and the impact on human health (1st ed., pp. 221–251). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Apostoli, P., Cornelis, R., Duffus, J., Hoet, P., Lison, D., Templeton, D. M., et al. (2006). Elemental speciation in human health risk assessment. Environmental Health Criteria 234. Geneva. https://www.who.int/ipcs/publications/ehc/ehc234.pdf?ua=1. Accessed August 9, 2018.

  • Arredondo, M., Martínez, R., Núñez, M. T., Ruz, M., & Olivares, M. (2006). Inhibition of iron and copper uptake by iron, copper and zinc. Biological Research,39, 95–102.

    Article  CAS  Google Scholar 

  • Artursson, P., Palm, K., & Luthman, K. (2012). Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews,64, 280–289. https://doi.org/10.1016/j.addr.2012.09.005.

    Article  Google Scholar 

  • Aziz, R., Rafiq, M. T., Li, T., Liu, D., He, Z., Stoffella, P. J., et al. (2015). Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). Journal of Agricultural and Food Chemistry,63(13), 3599–3608. https://doi.org/10.1021/jf505557g.

    Article  CAS  Google Scholar 

  • Aziz, R., Rafiq, M. T., Yang, J., Liu, D., Lu, L., He, Z., et al. (2014). Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702). BioMed Research International,2014, 839538. https://doi.org/10.1155/2014/839538.

    Article  CAS  Google Scholar 

  • Berni, P., Chitchumroonchokchai, C., Canniatti-Brazaca, S. G., De Moura, F. F., & Failla, M. L. (2014). Impact of genotype and cooking style on the content, retention, and bioacessibility of β-Carotene in biofortified cassava (Manihot esculenta Crantz) conventionally bred in Brazil. Journal of Agricultural and Food Chemistry,62(28), 6677–6686. https://doi.org/10.1021/jf5018302.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • BRAZIL, Brazilian Institute for the Environment and Renewable Natural Resource National Environment Council. (2012). Current Conama Resolutions published between September 1984 and January 2012. Ministry of the Environment: Brasília, pp. 748–762. http://www2.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf. Accessed April 20, 2015.

  • Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Bewley, R. J. F., Graham, M. C., et al. (2010). Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. The Science of the Total Environment,409(2), 267–277. https://doi.org/10.1016/j.scitotenv.2010.09.007.

    Article  CAS  Google Scholar 

  • Cai, X., Chen, X., Yin, N., Du, H., Sun, G., Wang, L., et al. (2017). Estimation of the bioaccessibility and bioavailability of Fe, Mn, Cu, and Zn in Chinese vegetables using the in vitro digestion/Caco-2 cell model: the influence of gut microbiota. Food and Function,8(12), 4592–4600. https://doi.org/10.1039/c7fo01348e.

    Article  CAS  Google Scholar 

  • Cui, X. Y., Xiang, P., He, R. W., Juhasz, A., & Ma, L. Q. (2016). Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. Chemosphere,150, 378–389. https://doi.org/10.1016/j.chemosphere.2016.02.041.

    Article  CAS  Google Scholar 

  • De Souza, J., Freitas, Z. M. F., & Storpirtis, S. (2007). Modelos in vitro para determinação da absorção de fármacos e previsão da relação dissolução/absorção. Revista Brasileira de Ciências Farmacêuticas,43(4), 515–527. https://doi.org/10.1590/S1516-93322007000400004. (in Portuguese).

    Article  Google Scholar 

  • Delie, F., & Rubas, W. (1997). A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 model. Critical Reviews in Therapeutic Drug Carrier System,14(3), 221–286. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v14.i3.20.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology,46(11), 6252–6260. https://doi.org/10.1021/es3006942.

    Article  CAS  Google Scholar 

  • Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology,40(1), 128–135. https://doi.org/10.1007/s002440010155.

    Article  CAS  Google Scholar 

  • Failla, M. L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F. F., Fregene, M., Manary, M. J., et al. (2012). Retention during processing and bioaccessibility of β-carotene in High β-carotene transgenic cassava root. Journal of Agricultural and Food Chemistry,60(15), 3861–3866. https://doi.org/10.1021/jf204958w.

    Article  CAS  Google Scholar 

  • Failla, M. L., Huo, T., & Thakkar, S. K. (2008). In vitro screening of relative bioaccessibility of carotenoids from foods. Asia Pacific Journal of Clinical Nutrition, 17(S1), 200–203. http://apjcn.nhri.org.tw/server./APJCN/17Suppl1/200.pdf. Accessed April 29, 2019.

  • Farmer, J. G., Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Graham, M. C., et al. (2011). A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Science of the Total Environment,409(23), 4958–4965. https://doi.org/10.1016/j.scitotenv.2011.08.061.

    Article  CAS  Google Scholar 

  • Ferruzza, S., Sambuy, Y., Ciriolo, M. R., De Martino, A., Santaroni, P., Rotilio, G., et al. (2000). Copper uptake and intracellular distribution in the human intestinal Caco-2 cell line. BioMetals,13, 179–185. https://doi.org/10.1023/A:1009271622356.

    Article  CAS  Google Scholar 

  • Fu, J., & Cui, Y. (2013). In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: the influence of cooking and additives. Food and Chemical Toxicology,59(2017), 215–221. https://doi.org/10.1016/j.fct.2013.06.014.

    Article  CAS  Google Scholar 

  • Garrett, D. A., Failla, M. L., & Sarama, R. J. (1999a). Development of an in vitro digestion method to assess carotenoid bioavailability from meals. Journal of Agricultural and Food Chemistry,47(10), 4301–4309. https://doi.org/10.1021/jf9903298.

    Article  CAS  Google Scholar 

  • Garrett, D. A., Failla, M. L., Sarama, R. J., & Craft, N. (1999b). Accumulation and retention of micellar β-carotene and lutein by Caco-2 human intestinal cells. Journal of Nutritional Biochemistry,10(10), 573–581. https://doi.org/10.1016/S0955-2863(99)00044-3.

    Article  CAS  Google Scholar 

  • Gee, G., & Or, D. (2002). Particle-size analysis. In J. Dane & G. Toop (Eds.), Methods of soil analysis: Part 4—Physical methods (pp. 255–293). Madison: SSSA, ASA.

    Google Scholar 

  • Hamilton, E. M., Barlow, T. S., Gowing, C. J. B., & Watts, M. J. (2015). Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102. Microchemical Journal,123, 131–138. https://doi.org/10.1016/j.microc.2015.06.001.

    Article  CAS  Google Scholar 

  • Hidalgo, I. J., Raub, T. J., & Borchardt, R. T. (1989). Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology,96(2), 736–749. https://doi.org/10.1016/S0016-5085(89)80072-1.

    Article  CAS  Google Scholar 

  • Hilgers, A. R., Conradi, R. A., & Burton, P. S. (1990). Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharmaceutical Research,7(9), 902–910. https://doi.org/10.1023/A:1015937605100.

    Article  CAS  Google Scholar 

  • Intawongse, M., & Dean, J. R. (2006). In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trends in Analytical Chemistry,25(9), 876–886. https://doi.org/10.1016/j.trac.2006.03.010.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere,69(6), 961–966. https://doi.org/10.1016/j.chemosphere.2007.05.018.

    Article  CAS  Google Scholar 

  • Jumarie, C. (1997). Caco-2 cell line used as an in vitro model to study cadmium accumulation in intestinal epithelial cells. Journal of Membrane Biology,158(1), 31–48. https://doi.org/10.1007/s002329900241.

    Article  CAS  Google Scholar 

  • Kang, T., Guan, R., Chen, X., Song, Y., Jiang, H., & Zhao, J. (2013). In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Research Letters,8(1), 1–8. https://doi.org/10.1186/1556-276X-8-496.

    Article  CAS  Google Scholar 

  • Koch, I., Reimer, K. J., Bakker, M. I., Basta, N. T., Cave, M. R., Denys, S., et al. (2013). Variability of bioaccessibility results using seventeen different methods on a standard reference material, NIST 2710. Journal of Environmental Science and Health. Part A,48(6), 641–655. https://doi.org/10.1080/10934529.2013.731817.

    Article  CAS  Google Scholar 

  • Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials,171(1–3), 1150–1158. https://doi.org/10.1016/j.jhazmat.2009.06.124.

    Article  CAS  Google Scholar 

  • Laparra, J. M., Vélez, D., Barberá, R., Montoro, R., & Farré, R. (2007). Bioaccessibility and transport by Caco-2 cells of organoarsenical species present in seafood. Journal of Agricultural and Food Chemistry,55(14), 5892–5897. https://doi.org/10.1021/jf070490f.

    Article  CAS  Google Scholar 

  • Lassalle, V. L., Pirillo, S., Rueda, E., & Ferreira, M. L. (2011). An accurate UV/visible method to quantify proteins and enzymes: Impact of aggregation, buffer concentration and the nature of the standard. Current topics in Analytical Chemistry,8, 83–93.

    CAS  Google Scholar 

  • Leblondel, G., & Allain, P. (1999). Manganese transport by Caco-2 cells. Biological Trace Element Research,67(1), 13–28. https://doi.org/10.1007/BF02784271.

    Article  CAS  Google Scholar 

  • Luo, X.-S., Ding, J., Xu, B., Wang, Y.-J., Li, H.-B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. The Science of the Total Environment,424, 88–96. https://doi.org/10.1016/j.scitotenv.2012.02.053.

    Article  CAS  Google Scholar 

  • Marôco, J. (2011). Análise Estatística com o SPSS Statistics (5th ed.). Pêro Pinheiro, Portugal: ReportNumber.

  • Mehta, N., Cocerva, T., Cipullo, S., Padoan, E., Dino, G. A., Ajmone-Marsan, F., et al. (2019). Linking oral bioaccessibility and solid phase distribution of potentially toxic elements in extractive waste and soil from an abandoned mine site: Case study in Campello Monti, NW Italy. Science of the Total Environment,651, 2799–2810. https://doi.org/10.1016/j.scitotenv.2018.10.115.

    Article  CAS  Google Scholar 

  • Morel, J. L., Chenu, C., & Lorenz, K. (2014). Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). Journal of Soil and Sediments. https://doi.org/10.1007/s11368-014-0926-0.

    Article  Google Scholar 

  • Noël, L., Huynh-Delerme, C., Huet, H., Guérin, T., Frémy, J. M., & Kolf-Clauw, M. (2006). Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model. BioMetals,19(5), 473–481. https://doi.org/10.1007/s10534-005-5147-y.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Tolls, J., Sips, A. J. A. M., & Groten, J. P. (2003). In vitro intestinal lead uptake and transport in relation to speciation. Archives of Environmental Contamination and Toxicology,44(1), 116–124. https://doi.org/10.1007/s00244-002-1226-z.

    Article  CAS  Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Cuny, D., Richard, A., et al. (2012). Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: A statistical modeling approach. Environmental Pollution,160(1), 130–138. https://doi.org/10.1016/j.envpol.2011.09.008.

    Article  CAS  Google Scholar 

  • Petering, D. H., Krezoski, S., & Tabatabai, N. M. (2009). Metallothionein toxicology: Metal ion trafficking and cellular protection. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Metallothioneins and related chelators: Metal ions in life sciences (1st ed., pp. 353–397). Cambridge: Royal Society of Chemistry. https://doi.org/10.1039/9781847558992-00353.

    Chapter  Google Scholar 

  • Piper, D. W., & Fenton, B. H. (1965). pH stability and activity curves of pepsin with special reference to their clinical importance. Gut,6(5), 506–508. https://doi.org/10.1136/gut.6.5.506.

    Article  CAS  Google Scholar 

  • Porter, G. S., Bajita-Locke, J. B., Hue, N. V., & Strand, D. (2004). Manganese solubility and phytotoxicity affected by soil moisture, oxygen levels, and green manure additions. Communications in Soil Science and Plant Analysis,35(1–2), 99–116. https://doi.org/10.1081/CSS-120027637.

    Article  CAS  Google Scholar 

  • Reboul, E., Abou, L., Mikail, C., Ghiringhelli, O., André, M., Portugal, H., et al. (2005). Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Biochemical Journal,387(2), 455–461. https://doi.org/10.1042/bj20040554.

    Article  CAS  Google Scholar 

  • Reeves, P. G., Briske-Anderson, M., & Johnson, L. (1998). Physiologic concentrations of zinc affect the kinetics of copper uptake and transport in the human intestinal cell model, Caco-2. Journal of Nutrition,128(10), 1794–1801. https://doi.org/10.1093/jn/128.10.1794.

    Article  CAS  Google Scholar 

  • Reeves, P. G., Briske-Anderson, M., & Newman, S. M., Jr. (1996). High zinc concentrations in culture media affect copper uptake and transport in differentiated human colon adenocarcinoma cells. Journal of Nutrition,126(6), 1701–1712. https://doi.org/10.1093/jn/126.6.1701.

    Article  CAS  Google Scholar 

  • Reis, A. P., Patinha, C., Wragg, J., Dias, A. C., Cave, M., Sousa, A. J., et al. (2014). Geochemistry, mineralogy, solid-phase fractionation and oral bioaccessibility of lead in urban soils of Lisbon. Environmental Geochemistry and Health,36, 867–881. https://doi.org/10.1007/s10653-014-9605-8.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Coelho, C., Cruz, N., Monteiro, R. J. R., Henriques, B., Duarte, A. C., et al. (2014). Oral bioaccessibility and human exposure to anthropogenic and geogenic mercury in urban, industrial and mining areas. The Science of the total environment,496, 649–661. https://doi.org/10.1016/j.scitotenv.2014.06.115.

    Article  CAS  Google Scholar 

  • Rogers, K. (2011). The digestive system (1st ed.). New York: Britannica Educational Publishing.

    Google Scholar 

  • Rossi, A., Poverini, R., Di Lullo, G., Modesti, A., Modica, A., & Scarino, M. L. (1996). Heavy metal toxicity following apical and basolateral exposure in the human intestinal cell line Caco-2. Toxicology in Vitro,10(1), 27–36. https://doi.org/10.1016/0887-2333(95)00097-6.

    Article  CAS  Google Scholar 

  • Smith, E., Kempson, I. M., Juhasz, A. L., Weber, J., Rofe, A., Gancarz, D., et al. (2011). In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environmental Science and Technology,45(14), 6145–6152. https://doi.org/10.1021/es200653k.

    Article  CAS  Google Scholar 

  • Suda, A., & Makino, T. (2016). Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma,270, 68–75. https://doi.org/10.1016/j.geoderma.2015.12.017.

    Article  CAS  Google Scholar 

  • Tallkvist, J., Bowlus, C. L., & Lönnerdal, B. (2000). Functional and molecular responses of human intestinal Caco-2 cells to iron treatment. The American Journal of Clinical Nutrition,72(3), 770–775. https://doi.org/10.1093/ajcn/72.3.770.

    Article  CAS  Google Scholar 

  • Templeton, G. F. (2011). A two-step approach for transforming continuous variables to normal: Implications and recommendations for IS research. Communications of the Association for Information Systems,28, 41–58.

    Article  Google Scholar 

  • US EPA. (2011). Soil and dust ingestion. Exposure factors handbook: 2011 edition, (EPA/600/R-09/052F). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252. Accessed July 4, 2018.

  • USEPA. (1989). Integrated risk information system (IRIS Assessment). https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?&substance_nmbr=141. Accessed January 15, 2019.

  • USEPA. (2007). Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC: U.S. Environmental Protection Agency. http://www.epa.gov/osw/hazard/testmethods/sw846/online/3_series.htm. Accessed April 22, 2014.

  • Vasiluk, L., Dutton, M. D., & Hale, B. (2011). In vitro estimates of bioaccessible nickel in field-contaminated soils, and comparison with in vivo measurement of bioavailability and identification of mineralogy. Science of the Total Environment,409(14), 2700–2706. https://doi.org/10.1016/j.scitotenv.2011.03.035.

    Article  CAS  Google Scholar 

  • Vasiluk, L., Pinto, L. J., Walji, Z. A., Tsang, W. S., Gobas, F. A. P. C., Eickhoff, C., et al. (2007). Benzo[a]pyrene bioavailability from pristine soil and contaminated sediment assessed using two in vitro models. Environmental Toxicology and Chemistry,26(3), 387–393. https://doi.org/10.1897/06-343r.1.

    Article  CAS  Google Scholar 

  • Wapnir, R. A. (1998). Copper absorption and bioavailability. American Journal of Clinical Nutrition,67, 1054S–1060S. https://doi.org/10.1093/ajcn/67.5.1054s.

    Article  CAS  Google Scholar 

  • Wise, C. (2002). Epithelial cell culture protocols: Methods in molecular biology (Vol. 188). London: Humana Press.

    Book  Google Scholar 

  • Wragg, J. (2009). BGS Guidance material 102, ironstone soil, certificate of analysis. British Geological Survey.

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., et al. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. The Science of the Total Environment,409(19), 4016–4030. https://doi.org/10.1016/j.scitotenv.2011.05.019.

    Article  CAS  Google Scholar 

  • Wragg, J., Cave, M., Taylor, H., Basta, N., Brandon, E., Casteel, S., et al. (2009). Inter-laboratory trial of a unified bioaccessibility testing procedure. British Geological Survey. Open Report OR/07/027, 90. http://nora.nerc.ac.uk/7491/. Accessed November 28, 2014.

  • Yin, N., Cai, X., Du, H., Zhang, Z., Li, Z., Chen, X., et al. (2017). In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2 cells. Chemosphere,168, 358–364. https://doi.org/10.1016/j.chemosphere.2016.10.091.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grant 2015/19332-9 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001. We thank Dr Mark Cave (British Geological Survey) for help in statistical analyses. We also thank Dr Carla Patinha (GeoBiotec, University of Aveiro) for support the first author’s laboratory training with oral bioaccessibility assays. Finally, we are grateful to José Eduardo Amaral, Larissa Torres, Flávia Paggiaro and Talita Negri (Luiz de Queiroz College of Agriculture, ESALQ), for their technical support on Caco-2 cells assays. We also thank to Dr Paulo Roberto Araújo Berni, for helpful advices on Caco-2 cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexys Giorgia Friol Boim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boim, A.G.F., Wragg, J., Canniatti-Brazaca, S.G. et al. Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices. Environ Geochem Health 42, 601–615 (2020). https://doi.org/10.1007/s10653-019-00394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00394-4

Keywords

Navigation