Skip to main content
Log in

Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

For the past fewer years, environment antibiotic residues have got more and more attention. The occurrence and distribution of eight common antibiotics, belonging to five classes, were determined in both water and sediment of eleven rivers of Hong Kong. The target antibiotics were found to be widely distributed. Sulfamethoxazole (n.d.–79.9 ng/L), sulfadimidine (n.d.–29.9 ng/L), and ofloxacin (n.d.–75.5 ng/L) were the dominant antibiotics in river water, with detection rates of 84.6, 76.9, and 69.2%, respectively. Tetracycline (n.d.–9.8 ng/g) was the dominant antibiotic in sediment, with a detection rate of 60%. The concentrations of all antibiotics in river water of Hong Kong were lower than which in various rivers of Europe, North America and Australia, as well as the Pearl River Basin of China. All sediment sites exhibited significant bacterial diversity. Gammaproteobacteria (0.08–12.7%) and Flavobacteria (0.14–14.1%) were the dominant bacterial classes in all sediments. The bacterial compositions varied between sites; areas polluted with high levels of antibiotics had rich and highly diverse bacterial communities. The environmental risk assessment determined that the antibiotics in 73.1% of the samples posed ecological risks to algae, and two samples posed low risks to invertebrates. Ofloxacin was the main contributor of risk to aquatic organisms, while the antibiotics in 11.5% of the samples posed resistance selection risks.

Graphical Abstract

The occurrence and distribution of eight common antibiotics, belonging to five classes, were widely distributed in Hong Kong. Sulfamethoxazole, sulfadimidine, and ofloxacin were the dominant antibiotics in river waters, Tetracycline was the dominant antibiotic in sediment. Areas polluted with high levels of antibiotics had rich and highly diverse bacterial communities. Antibiotics in 73.1% of the samples posed ecological risks, while the antibiotics in 11.5% of the samples posed resistance selection risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50, 1319–1330.

    Article  CAS  Google Scholar 

  • Bengtsson-Palme, J., & Larsson, D. G. J. (2016). Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149.

    Article  CAS  Google Scholar 

  • Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicology and Environmental Safety, 91, 1–9.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A., Kolpin, D. W., Halling-Sørensen, B., & Tolls, J. (2003). Peer reviewed: Are veterinary medicines causing environmental risks? Environmental Science and Technology, 37, 286A–294A.

    Article  CAS  Google Scholar 

  • Bushaw-Newton, K. L., Ewers, E. C., Velinsky, D. J., Ashley, J. T. F., & MacAvoy, S. E. (2012). Bacterial community profiles from sediments of the Anacostia River using metabolic and molecular analyses. Environmental Science and Pollution Research, 19, 1271–1279.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Bittinger, K., Bushman, F. D., DeSantis, T. Z., Andersen, G. L., & Knight, R. (2009). PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics, 26, 266–267.

    Article  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.

    Article  CAS  Google Scholar 

  • Chen, K., & Zhou, J. L. (2014). Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere, 95, 604–612.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107, 907–938.

    Article  CAS  Google Scholar 

  • Deng, W., Li, N., Zheng, H., & Lin, H. (2016). Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicology and Environmental Safety, 125, 121–127.

    Article  CAS  Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069–5072.

    Article  CAS  Google Scholar 

  • Dethlefsen, L., & Relman, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences, 108, 4554–4561.

    Article  CAS  Google Scholar 

  • EC (European Commission). (2003). European commission Technical Guidance Document in Support of Commission Directive 93//67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance, Part II. In: Commission, E. (Ed.). pp. 100–103.

  • Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., & Xu, L. (2012). Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, 46, 2355–2364.

    Article  CAS  Google Scholar 

  • García-Galán, M. J., Díaz-Cruz, M. S., & Barceló, D. (2011). Occurrence of sulfonamide residues along the Ebro river basin: Removal in wastewater treatment plants and environmental impact assessment. Environment International, 37, 462–473.

    Article  Google Scholar 

  • Gibbons, S. M., Jones, E., Bearquiver, A., Blackwolf, F., Roundstone, W., Scott, N., et al. (2014). Human and environmental impacts on river sediment microbial communities. PLoS ONE, 9, e97435.

    Article  Google Scholar 

  • Guerra, P., Kim, M., Shah, A., Alaee, M., & Smyth, S. A. (2014). Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Science of the Total Environment, 473–474, 235–243.

    Article  Google Scholar 

  • Halling-Sørensen, B., Lützhøft, H.-C. H., Andersen, H. R., & Ingerslev, F. (2000). Environmental risk assessment of antibiotics: Comparison of mecillinam, trimethoprim and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 46, 53–58.

    Article  Google Scholar 

  • Huang, Q., Zhang, K., Wang, Z., Wang, C., & Peng, X. (2012). Enantiomeric determination of azole antifungals in wastewater and sludge by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 403, 1751–1760.

    Article  CAS  Google Scholar 

  • Jakobsson, H. E., Jernberg, C., Andersson, A. F., Sjölund-Karlsson, M., Jansson, J. K., & Engstrand, L. (2010). Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE, 5, e9836.

    Article  Google Scholar 

  • Jernberg, C., Lofmark, S., Edlund, C., & Jansson, J. K. (2007). Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME Journal, 1, 56–66.

    Article  CAS  Google Scholar 

  • Jiang, L., Hu, X., Yin, D., Zhang, H., & Yu, Z. (2011). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 82, 822–828.

    Article  CAS  Google Scholar 

  • Khetan, S. K., & Collins, T. J. (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chemical Reviews, 107, 2319–2364.

    Article  CAS  Google Scholar 

  • Kohanski, M. A., DePristo, M. A., & Collins, J. J. (2010). Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Molecular Cell, 37, 311–320.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science and Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2009). Antibiotics in the aquatic environment—a review—Part I. Chemosphere, 75, 417–434.

    Article  Google Scholar 

  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., et al. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13, 1057–1098.

    Article  Google Scholar 

  • Lee, Y.-J., Lee, S.-E., Lee, D. S., & Kim, Y.-H. (2008). Risk assessment of human antibiotics in Korean aquatic environment. Environmental Toxicology and Pharmacology, 26, 216–221.

    Article  CAS  Google Scholar 

  • Li, W. H., Gao, L. H., Shi, Y. L., Liu, J. M., & Cai, Y. Q. (2015). Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China. Environmental Science Processes & Impacts, 17, 1611–1619.

    Article  CAS  Google Scholar 

  • Lindberg, R. H., Fick, J., & Tysklind, M. (2010). Screening of antimycotics in Swedish sewage treatment plants—waters and sludge. Water Research, 44, 649–657.

    Article  CAS  Google Scholar 

  • Lozupone, C., & Knight, R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71, 8228–8235.

    Article  CAS  Google Scholar 

  • Minh, T. B., Leung, H. W., Loi, I. H., Chan, W. H., So, M. K., Mao, J. Q., et al. (2009). Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour. Marine Pollution Bulletin, 58, 1052–1062.

    Article  CAS  Google Scholar 

  • Pei, R., Kim, S.-C., Carlson, K. H., & Pruden, A. (2006). Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 40, 2427–2435.

    Article  CAS  Google Scholar 

  • Peng, X., Huang, Q., Zhang, K., Yu, Y., Wang, Z., & Wang, C. (2012). Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China. Science of the Total Environment, 426, 311–317.

    Article  CAS  Google Scholar 

  • Pouliquen, H., & Le Bris, H. (1996). Sorption of oxolinic acid and oxytetracycline to marine sediments. Chemosphere, 33, 801–815.

    Article  CAS  Google Scholar 

  • Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). Fast tree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE, 5, e9490.

    Article  Google Scholar 

  • Robinson, A. A., Belden, J. B., & Lydy, M. J. (2005). Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environmental Toxicology and Chemistry, 24, 423–430.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  Google Scholar 

  • Stoob, K., Singer, H. P., Mueller, S. R., Schwarzenbach, R. P., & Stamm, C. H. (2007). Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment. Environmental Science and Technology, 41, 7349–7355.

    Article  CAS  Google Scholar 

  • Sun, J., Luo, Q., Wang, D., & Wang, Z. (2015). Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 117, 132–140.

    Article  CAS  Google Scholar 

  • Tamtam, F., Mercier, F., Le Bot, B., Eurin, J., Tuc Dinh, Q., Clément, M., et al. (2008). Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Science of the Total Environment, 393, 84–95.

    Article  CAS  Google Scholar 

  • Tang, J., Shi, T. Z., Wu, X. W., Cao, H. Q., Li, X. D., Hua, R. M., et al. (2015). The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment. Chemosphere, 122, 154–161.

    Article  CAS  Google Scholar 

  • Van Doorslaer, X., Dewulf, J., Van Langenhove, H., & Demeestere, K. (2014). Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Science of the Total Environment, 500–501, 250–269.

    Article  Google Scholar 

  • Wang, H., Wang, B., Zhao, Q., Zhao, Y., Fu, C., Feng, X., et al. (2015). Antibiotic body burden of Chinese School Children: A multisite biomonitoring-based study. Environmental Science and Technology, 49, 5070–5079.

    Article  CAS  Google Scholar 

  • Wang, Y., Sheng, H.-F., He, Y., Wu, J.-Y., Jiang, Y.-X., Tam, N. F.-Y., et al. (2012). Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Applied and Environmental Microbiology, 78, 8264–8271.

    Article  CAS  Google Scholar 

  • Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of the Total Environment, 407, 2711–2723.

    Article  CAS  Google Scholar 

  • Werner, J. J., Koren, O., Hugenholtz, P., DeSantis, T. Z., Walters, W. A., Caporaso, J. G., et al. (2012). Impact of training sets on classification of high-throughput bacterial 16 s rRNA gene surveys. ISME Journal, 6, 94–103.

    Article  CAS  Google Scholar 

  • Xu, W., Zhang, G., Zou, S., Li, X., & Liu, Y. (2007). Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 145, 672–679.

    Article  CAS  Google Scholar 

  • Xue, B. M., Zhang, R. J., Wang, Y. H., Liu, X., Li, J., & Zhang, G. (2013). Antibiotic contamination in a typical developing city in south China: Occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and Environmental Safety, 92, 229–236.

    Article  CAS  Google Scholar 

  • Yang, J. F., Ying, G. G., Zhao, J. L., Tao, R., Su, H. C., & Liu, Y. S. (2011). Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of Environmental Science and Health, Part B, 46, 272–280.

    Article  Google Scholar 

  • Yiruhan, Y., Wang, Q. J., Mo, C. H., Li, Y. W., Gao, P., Tai, Y. P., et al. (2010). Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environmental Pollution, 158, 2350–2358.

    Article  CAS  Google Scholar 

  • Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J.-L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science and Technology, 49, 6772–6782.

    Article  CAS  Google Scholar 

  • Zhang, R., Zhang, G., Zheng, Q., Tang, J., Chen, Y., Xu, W., et al. (2012). Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge. Ecotoxicology and Environmental Safety, 80, 208–215.

    Article  CAS  Google Scholar 

  • Zou, S., Xu, W., Zhang, R., Tang, J., Chen, Y., & Zhang, G. (2011). Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environmental Pollution, 159, 2913–2920.

    Article  CAS  Google Scholar 

  • Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., & Fanelli, R. (2010). Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials, 179, 1042–1048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Early Career Start/General Research Fund of Hong Kong (Code No. ECS/GRF 845212), FLASS Dean’s Research Fund (Ref. No. 04200), Internal Research Grant of the Education University of Hong Kong (Ref. No. R3807, R3919). The project was supported by National Natural Science Foundation of China (Grant No. U1701242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Guo Ying.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, WJ., Li, N. & Ying, GG. Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong. Environ Geochem Health 40, 2191–2203 (2018). https://doi.org/10.1007/s10653-018-0092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0092-1

Keywords

Navigation