Skip to main content
Log in

An exposure-risk assessment for potentially toxic elements in rice and bulgur

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Rice and wheat are rich sources of essential elements. However, they may also accumulate potentially toxic elements (PTE). Bulgur, the popular alternative to rice in the eastern Mediterranean, is produced by processing wheat, during which PTE content may change. This study determined PTE concentrations in rice and bulgur collected from 50 participant households in the city of Izmir, Turkey, estimated ingestion exposure, and associated chronic-toxic and carcinogenic human health risks. Comparison of the determined concentrations to the available standard levels and the levels reported in the literature revealed that Cd, Co, and Pb in rice might be of concern. The estimated health risks of individual participants supported this result with exceedance of respective threshold or acceptable risk levels at the 95th percentile. Population risk estimates indicated that the proportion with higher than the threshold or acceptable risk is about 10, 24, and 12% for Cd, Co, and Pb in rice, respectively. Results of this study showed that health risks associated with PTE exposure through bulgur consumption are lower than those of rice, and below the threshold or acceptable risk levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adomako, E. E., Williams, P. N., Deacon, C., & Meharg, A. A. (2011). Inorganic arsenic and trace elements in Ghanaian grain staples. Environmental Pollution, 159(10), 2435–2442. doi:10.1016/j.envpol.2011.06.031.

    Article  CAS  Google Scholar 

  • Arslanbas, E., & Baydan, E. (2013). Metal levels in organically and conventionally produced animal and vegetable products in Turkey. Food Additives and Contaminants Part B-Surveillance, 6(2), 130–133. doi:10.1080/19393210.2013.764931.

    Article  CAS  Google Scholar 

  • Batista, B. L., Souza, V. C. D., Da Silva, F. G., & Barbosa, F. (2010). Survey of 13 trace elements of toxic and nutritional significance in rice from Brazil and exposure assessment. Food Additives and Contaminants Part B-Surveillance, 3(4), 253–262. doi:10.1080/19393210.2010.516024.

    Article  CAS  Google Scholar 

  • Bayram, M. (2000). Bulgur around the world. Cereal Foods World, 45(2), 80–82.

    Google Scholar 

  • Bayram, M., & Öner, M.D. (2002). The new old wheat. World Grain, November, 51–53.

    Google Scholar 

  • Bergkvist, C., Kippler, M., Hamadani, J. D., Grander, M., Tofail, F., Berglund, M., et al. (2010). Assessment of early-life lead exposure in rural Bangladesh. Environmental Research, 110(7), 718–724. doi:10.1016/j.envres.2010.07.004.

    Article  CAS  Google Scholar 

  • Bermudez, G. M. A., Jasan, R., Pla, R., & Luisa Pignata, M. (2011). Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. Journal of Hazardous Materials, 193, 264–271. doi:10.1016/j.jhazmat.2011.07.058.

    Article  CAS  Google Scholar 

  • Fangmin, C., Ningchun, Z., Haiming, X., Yi, L., Wenfang, Z., Zhiwei, Z., et al. (2006). Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Science of the Total Environment, 359(1–3), 156–166. doi:10.1016/j.scitotenv.2005.05.005.

    Article  CAS  Google Scholar 

  • Fu, J., Zhang, A., Wang, T., Qu, G., Shao, J., Yuan, B., et al. (2013). Influence of e-waste dismantling and its regulations: Temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk. Environmental Science and Technology, 47(13), 7437–7445. doi:10.1021/es304903b.

    Article  CAS  Google Scholar 

  • Fu, Q.-L., Li, L., Achal, V., Jiao, A.-Y., & Liu, Y. (2015). Concentrations of heavy metals and arsenic in market rice grain and their potential health risks to the population of Fuzhou, China. Human and Ecological Risk Assessment, 21(1), 117–128. doi:10.1080/10807039.2014.884398.

    Article  CAS  Google Scholar 

  • Gunduz, S., & Akman, S. (2013). Investigation of arsenic and cadmium contents in rice samples in Turkey by electrothermal atomic absorption spectrometry. Food Analytical Methods, 6(6), 1693–1696. doi:10.1007/s12161-013-9588-6.

    Article  Google Scholar 

  • Hang, X. S., Wang, H. Y., Zhou, J. M., Ma, C. L., Du, C. W., & Chen, X. Q. (2009). Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental Pollution, 157(8–9), 2542–2549. doi:10.1016/j.envpol.2009.03.002.

    Article  CAS  Google Scholar 

  • Huang, M., Zhou, S., Sun, B., & Zhao, Q. (2008). Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Science of the Total Environment, 405(1–3), 54–61. doi:10.1016/j.scitotenv.2008.07.004.

    Article  CAS  Google Scholar 

  • Huang, Z., Pan, X.-D., Wu, P.-G., Han, J.-L., & Chen, Q. (2013). Health risk assessment of heavy metals in rice to the population in Zhejiang, China. PLoS ONE. doi:10.1371/journal.pone.0075007.

    Article  Google Scholar 

  • IRIS (2016). Integrated Risk Information System. www.epa.gov/iris. Accessed April 2016.

  • Jallad, K. (2015). Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans. Environmental Science and Pollution Research, 22(20), 15449–15458. doi:10.1007/s11356-015-4753-7.

    Article  CAS  Google Scholar 

  • JEFCA. (1982). Evaluation of certain food additives and contaminants, twenty-sixth meeting of the joint FAO/WHO expert committee on food additives, WHO food additives series. Geneva: World Health Organization.

    Google Scholar 

  • JEFCA. (2011). Safety evaluation of certain food additives and contaminants, seventy-third meeting of the joint FAO/WHO expert committee on food additives, WHO food additives series. Geneva: World Health Organization.

    Google Scholar 

  • JEFCA. (2013). Safety evaluation of certain food additives and contaminants, seventy-seventh meeting of the joint FAO/WHO expert committee on food additives WHO food additives series. Geneva: World Health Organization.

    Google Scholar 

  • Jorhem, L., Åstrand, C., Sundström, B., Baxter, M., Stokes, P., Lewis, J., et al. (2008). Elements in rice from the Swedish market: 1 cadmium, lead and arsenic (total and inorganic). Food Additives and Contaminants: Part A, 25(3), 284–292. doi:10.1080/02652030701474219.

    Article  CAS  Google Scholar 

  • Kadakal, Ç., Ekinci, R., & Yapar, A. (2007). The effect of cooking and drying on the water-soluble vitamins content of bulgur. Food Science and Technology International, 13(5), 349–354. doi:10.1177/1082013207085688.

    Article  CAS  Google Scholar 

  • Li, Q., Chen, Y., Fu, H., Cui, Z., Shi, L., Wang, L., et al. (2012). Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. Journal of Hazardous Materials, 227–228, 148–154. doi:10.1016/j.jhazmat.2012.05.023.

    Article  CAS  Google Scholar 

  • Li, W. C., Ouyang, Y., & Ye, Z. H. (2014a). Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine. Environmental Toxicology and Chemistry, 33(11), 2438–2447. doi:10.1002/etc.2706.

    Article  CAS  Google Scholar 

  • Li, W., Xu, B., Song, Q., Liu, X., Xu, J., & Brookes, P. C. (2014b). The identification of ‘hotspots’ of heavy metal pollution in soil-rice systems at a regional scale in eastern China. Science of the Total Environment, 472, 407–420. doi:10.1016/j.scitotenv.2013.11.046.

    Article  CAS  Google Scholar 

  • Liu, H., Probst, A., & Liao, B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339(1–3), 153–166. doi:10.1016/j.scitotenv.2004.07.030.

    Article  CAS  Google Scholar 

  • Mihucz, V. G., Silversmit, G., Szaloki, I., de Samber, B., Schoonjans, T., Tatar, E., et al. (2010). Removal of some elements from washed and cooked rice studied by inductively coupled plasma mass spectrometry and synchrotron based confocal micro-X-ray fluorescence. Food Chemistry, 121(1), 290–297. doi:10.1016/j.foodchem.2009.11.090.

    Article  CAS  Google Scholar 

  • Mondal, D., & Polya, D. A. (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 23(11), 2987–2998. doi:10.1016/j.apgeochem.2008.06.025.

    Article  CAS  Google Scholar 

  • Norton, G. J., Williams, P. N., Adomako, E. E., Price, A. H., Zhu, Y., Zhao, F.-J., et al. (2014). Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Science of the Total Environment, 485, 428–434. doi:10.1016/j.scitotenv.2014.03.090.

    Article  CAS  Google Scholar 

  • OEHHA. (2016). OEHHA chemical database. California: California Environmental Protection Agency, Office of Environmental Health Hazard Assessment.

    Google Scholar 

  • Özboy, Ö., & Köksel, H. (2001). Preliminary communication Dietary fiber content of bulgur as affected by wheat variety. Acta Alimentaria, 30(4), 407–414. doi:10.1556/AAlim.30.2001.4.9.

    Article  Google Scholar 

  • Qian, Y. Z., Chen, C., Zhang, Q., Li, Y., Chen, Z. J., & Li, M. (2010). Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control, 21(12), 1757–1763. doi:10.1016/j.foodcont.2010.08.005.

    Article  CAS  Google Scholar 

  • Rahman, M. A., & Hasegawa, H. (2011). High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Science of the Total Environment, 409(22), 4645–4655. doi:10.1016/j.scitotenv.2011.07.068.

    Article  CAS  Google Scholar 

  • RAIS (2016). Risk Assessment Information System, rais.ornl.gov. Accessed April 2016.

  • Robson, T. C., Braungardt, C. B., Rieuwerts, J., & Worsfold, P. (2014). Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environmental Pollution, 184, 283–289. doi:10.1016/j.envpol.2013.09.001.

    Article  CAS  Google Scholar 

  • Shi, G. L., Lou, L. Q., Zhang, S., Xia, X. W., & Cai, Q. S. (2013). Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China. Environmental Science and Pollution Research, 20(12), 8435–8445. doi:10.1007/s11356-013-1842-3.

    Article  CAS  Google Scholar 

  • Si, W., Liu, J., Cai, L., Jiang, H., Zheng, C., He, X., et al. (2015). Health risks of metals in contaminated farmland soils and spring wheat irrigated with yellow river water in Baotou, China. Bulletin of Environmental Contamination and Toxicology, 94(2), 214–219. doi:10.1007/s00128-014-1435-y.

    Article  CAS  Google Scholar 

  • Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48(2), 611–619. doi:10.1016/j.fct.2009.11.041.

    Article  CAS  Google Scholar 

  • Sofuoglu, S. C., Güzelkaya, H., Akgül, Ö., Kavcar, P., Kurucaovalı, F., & Sofuoglu, A. (2014). Speciated arsenic concentrations, exposure, and associated health risks for rice and bulgur. Food and Chemical Toxicology, 64, 184–191. doi:10.1016/j.fct.2013.11.029.

    Article  CAS  Google Scholar 

  • Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., et al. (2007). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science and Technology, 41(19), 6854–6859. doi:10.1021/es070627i.

    Article  CAS  Google Scholar 

  • Yeganeh, M., Afyuni, M., Khoshgoftarmanesh, A.-H., Soffianian, A.-R., & Schulin, R. (2012). Health risks of metals in soil, water, and major food crops in Hamedan Province, Iran. Human and Ecological Risk Assessment, 18(3), 547–568. doi:10.1080/10807039.2012.672886.

    Article  CAS  Google Scholar 

  • Yıldırım, A., Bayram, M., & Öner, M. D. (2008). Bulgur milling using a helical disc mill. Journal of Food Engineering, 87, 564–570. doi:10.1016/j.jfoodeng.2008.01.010.

    Article  Google Scholar 

  • Zeng, X., Wang, Z., Wang, J., Guo, J., Chen, X., & Zhuang, J. (2015). Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area. Ecotoxicology, 24(10), 2115–2124. doi:10.1007/s10646-015-1547-0.

    Article  CAS  Google Scholar 

  • Zhu, P., Liang, X.-X., Wang, P., Wang, J., Gao, Y.-H., Hu, S.-G., et al. (2016). Assessment of dietary cadmium exposure: A cross-sectional study in rural areas of South China. Food Control, 62, 284–290. doi:10.1016/j.foodcont.2015.10.046.

    Article  CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5), 1551–1561. doi:10.1016/j.scitotenv.2008.10.061.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hilal Güzelkaya, Özlem Akgül, and Pınar Kavcar for collection and extraction of the samples. Environmental Research Center at Izmir Institute of Technology (IzTech) is acknowledged for microwave digestion and ICP-MS analysis. We also thank IzTech School of Engineering for providing consumables for digestion procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sait C. Sofuoglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofuoglu, S.C., Sofuoglu, A. An exposure-risk assessment for potentially toxic elements in rice and bulgur. Environ Geochem Health 40, 987–998 (2018). https://doi.org/10.1007/s10653-017-9954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9954-1

Keywords

Navigation