Skip to main content
Log in

Effects of natural organic matter on the coprecipitation of arsenic with iron

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Natural organic matter (NOM) can affect arsenic speciation and mobility in the environment. In this study, the effects of NOM on the coprecipitation of arsenic with iron were investigated in order to better understand the fate and transport of arsenic in natural environments. The coprecipitation of arsenic with iron was studied in the presence and absence of NOM under various arsenic-to-iron molar ratios (As/Fe) and pH conditions. The addition of humic acid (HA) hindered the As–Fe coprecipitation under high pH and high As/Fe conditions by forming a soluble As–Fe–HA complex. The X-ray diffraction and Fourier transform infrared studies showed that the As–Fe-coprecipitated solid phase was highly affected by pH and As/Fe. The arsenic was coprecipitated with iron as an amorphous ferric arsenate phase at a low pH level or high As/Fe conditions, while the formation of ferrihydrite phase and the arsenic incorporation to the ferrihydrite by adsorption was predominant at high pH levels or low As/Fe conditions. The HA affected the As–Fe-coprecipitated solid phase depending on the As/Fe molar ratio under neutral and alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen, Z., Cai, Y., Solo-Gabriele, H., Snyder, G. H., & Cisar, J. L. (2006). Interactions of arsenic and the dissolved substances derived from turf soils. Envionmental Science & Technology, 40, 4659–4665.

    Article  CAS  Google Scholar 

  • Deng, Y., & Dixon, J. B. (2002). Soil organic matter and organic-mineral interactions. In J. B. Dixon & D. G. Schulze (Eds.), Soil mineralogy with environmental applications (Vol. 3). Madison, WI: Soil Science Society of America Inc.

    Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Envionmental Science & Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Ford, R. G. (2002). Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. Envionmental Science & Technology, 36, 2459–2463.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Johnston, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234, 204–216.

    Article  CAS  Google Scholar 

  • Gomez, M. A., Assaaoudi, H., Becze, L., Cutler, J. N., & Demopoulos, G. P. (2009). Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4·2H2O), ferric arsenate sub-hydrate (FAsH; FeAsO4·0.75H2O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO4)1 − x(SO4)x(OH)x]·wH2O). Journal of Raman Spectroscopy, 41, 212–221.

    Google Scholar 

  • Gu, B., Schmitt, J., Chen, Z., Liang, L., & Mccarthy, J. F. (1995). Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta, 59, 219–229.

    Article  CAS  Google Scholar 

  • Hwang, B.-R., Kim, E. J., Yang, J.-S., & Baek, K. (2014). Extractive and oxidative removal of copper bound to humic acid in soil. Envionmental Science and Pollution Research,. doi:10.1007/s11356-014-3810-y.

    Google Scholar 

  • Jia, Y., Xu, L., Fang, Z., & Demopoulos, G. P. (2006). Observation of surface precipitation of arsenate on ferrihydrite. Envionmental Science & Technology, 40, 3248–3253.

    Article  CAS  Google Scholar 

  • Jia, Y., Xu, L., Wang, X., & Demopoulos, G. P. (2007). Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica et Cosmochimica Acta, 71, 1643–1654.

    Article  CAS  Google Scholar 

  • Kim, E. J., Yoo, J.-C., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29–35.

    Article  CAS  Google Scholar 

  • Langmuir, D., Mahoney, J., & Rowson, J. (2006). Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70(12), 2942–2956.

    Article  CAS  Google Scholar 

  • Lin, H.-T., Wang, M. C., & Li, G.-C. (2004). Complexation of arsenate with humic substance in water extract of compost. Chemosphere, 56, 1105–1112.

    Article  CAS  Google Scholar 

  • Liu, G., Fernandez, A., & Cai, Y. (2011). Complexation of arsenite with humic acid in the presence of ferric iron. Envionmental Science & Technology, 45, 3210–3216.

    Article  CAS  Google Scholar 

  • Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis: Mineralogical, organic and inorganic methods. Heidelberg: Springer.

    Book  Google Scholar 

  • Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Envionmental Science & Technology, 36, 2889–2896.

    Article  CAS  Google Scholar 

  • Scott, D. T., Mcknight, D. M., Blunt-Harris, E. L., Kolesar, S. E., & Lovley, D. R. (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Envionmental Science & Technology, 32, 2984–2989.

    Article  CAS  Google Scholar 

  • Sharma, P., Ofner, J., & Kappler, A. (2010). Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Envionmental Science & Technology, 44, 4479–4485.

    Article  CAS  Google Scholar 

  • Sharma, P., Rolle, M., Kocar, B., Fendorf, S., & Kappler, A. (2011). Influence of natural organic matter on As transport and retention. Envionmental Science & Technology, 45, 546–553.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Stollenwerk, K. G. (2003). Geochemical processes controlling transport of arsenic in groundwater: A review of adsorption (Arsenic in ground water: Geochemistry and occurrence) (Vol. 3). Boston, Dordrecht, London: Kluwer Academic Publishers.

    Google Scholar 

  • Tokoro, C., Yatsugi, Y., Koga, H., & Owada, S. (2010). Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution. Envionmental Science & Technology, 44, 638–643.

    Article  CAS  Google Scholar 

  • Violante, A., Gaudio, S. D., Pigna, M., Ricciardella, M., & Banerjee, D. (2007). Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy and reactivity of iron(III) precipitates. Envionmental Science & Technology, 41, 8275–8280.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Korea Environment Industry and Technology Institute (KEITI) through Geo-Advanced Innovation Action Program (2013000550006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.J., Hwang, BR. & Baek, K. Effects of natural organic matter on the coprecipitation of arsenic with iron. Environ Geochem Health 37, 1029–1039 (2015). https://doi.org/10.1007/s10653-015-9692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9692-1

Keywords

Navigation