Skip to main content
Log in

Students’ individual schematization pathways - empirical reconstructions for the case of part-of-part determination for fractions

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

According to the design principle of progressive schematization, learning trajectories towards procedural rules can be organized as independent discoveries when the learning arrangement invites the students first to develop models for mathematical concepts and model-based informal strategies; then to explore the strategies and to discover pattern for progressively developing procedural rules. This article contributes to the theoretical and empirical foundation of the design principle of progressive schematization by empirically investigating students’ individual schematization pathways on the micro-level for the specific case of part-of-part determination of fractions. In design experiments series in laboratory settings, nine pairs of sixth graders explored the part-of-part determination and progressively schematized their graphical strategies before discovering the procedural rule. The qualitative in-depth analysis of 760 min of video shows that progressive schematization is a multi-facetted process that cannot be described by internalization of graphical procedures alone. Instead, the compaction of concepts- and theorems-in-action is crucial, especially for the goal of justifiable procedural rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebli, H. (1981). Denken: das Ordnen des Tuns. Band II: Denkprozesse. Stuttgart: Klett.

    Google Scholar 

  • Barzel, B., Leuders, T., Prediger, S., & Hußmann, S. (2013). Designing tasks for engaging students in active knowledge organization. In A. Watson, M. Ohtani, et al. (Eds.), ICMI study 22 on task design—Proceedings of the study conference (pp. 285–294). Oxford: ICMI.

    Google Scholar 

  • Behr, M., Cramer, K., Post, T., & Lesh, R. (2009). Rational number project: Initial fraction ideas. Online-Book. Minneapolis. University of Minnesota. Retrieved from  http://www.cehd.umn.edu/ci/rationalnumberproject/rnp1-09.html.

  • Buijs, K. (2008). Leren vermenigvuldigen met meercijferige getallen. Utrecht: Freudenthal Institute.

    Google Scholar 

  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in education research. Educational Researcher, 32(1), 9–13. doi:10.3102/0013189X032001009.

    Article  Google Scholar 

  • Cramer, K., & Bezuk, N. (1991). Multiplication of fractions: Teaching for understanding. Arith Teach, 39(3), 34–37.

    Google Scholar 

  • Freudenthal, H. (1981). Major problems of mathematical education. Educational Studies in Mathematics, 12(2), 133–150. doi:10.1007/BF00305618.

    Article  Google Scholar 

  • Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Kluwer.

    Google Scholar 

  • Glade, M. (2016). Individuelle Prozesse der fortschreitenden Schematisierung—Empirische Rekonstruktionen zum Anteil vom Anteil. Wiesbaden: Springer. doi:10.1007/978-3-658-11254-7.

    Book  Google Scholar 

  • Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. Van der Akker, K. Gravemeijer, S. McKenny, & N. Nieveen (Eds.), Educational design research (pp. 17–51). London: Routledge.

    Google Scholar 

  • Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1–3), 111–129. doi:10.1023/A:1003749919816.

  • Harun, H. Z. (2011). Evaluating the teaching and learning of fractions through modelling in Brunei (Doctoral dissertation). University of Manchester, UK. Retrieved from  https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:119340&datastreamId=FULL-TEXT.PDF.

  • Krämer, S. (2003). “Schriftbildlichkeit” oder: Über eine (fast) vergessene Dimension der Schrift. In H. Bredekamp & S. Krämer (Eds.), Bild, Schrift, Zahl (pp. 157–176). München: Fink.

    Google Scholar 

  • Lorange, C. A., & Rinvold, R. A. (2013). Levels of objectification in student’s strategies. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 323–332). Ankara: METU University / ERME.

    Google Scholar 

  • Lorange, C. A., & Rinvold, R. A. (2014). Students’ strategies of expanding fractions to a common denominator—a semiotic perspective. Nord Math, 19(2), 57–75.

    Google Scholar 

  • Prediger, S. (2013). Focussing structural relations in the bar board—a design research study for fostering all students’ conceptual understanding of fractions. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 343–352). Ankara: METU University / ERME.

    Google Scholar 

  • Prediger, S., & Link, M. (2012). Fachdidaktische Entwicklungsforschung - Ein lernprozessfokussierendes Forschungsprogramm mit Verschränkung fachdidaktischer Arbeitsbereiche. In H. Bayrhuber, U. Harms, B. Muszynski, B. Ralle, M. Rothgangel, L.-H. Schön, H. Vollmer, & H.-G. Weigand (Eds.), Formate Fachdidaktischer Forschung (pp. 29–46). Münster: Waxmann.

    Google Scholar 

  • Prediger, S. & Schnell, S. (2014). Investigating the dynamics of stochastic learning processes: A didactical research perspective. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking (pp. 533–558). Dordrecht: Springer. doi:10.1007/978-94-007-7155-0_29.

    Chapter  Google Scholar 

  • Prediger, S., Schink, A., Schneider, C., & Verschraegen, J. (2013). Kinder weltweit—Anteile in Statistiken. In S. Prediger, B. Barzel, S. Hußmann, & T. Leuders (Eds.), Mathewerkstatt 6 [Textbook for Grade 6] (pp. 143–164). Berlin: Cornelsen.

    Google Scholar 

  • Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus on learning processes—an overview on achievements and challenges. ZDM Mathematics Education, 47(6), 877–891. doi:10.1007/s11858-015-0722-3.

    Article  Google Scholar 

  • Radford, L. (2012). Early algebraic thinking: Epistemological, semiotic and developmental issues. Paper presented at ICME, Seoul, South Korea. Retrieved from http://www.icme12.org/upload/submission/1942_F.pdf

  • Stegmaier, W., & Herrmann, T. (1992). Schema, Schematismus. In J. Ritter & K. Gründer (Eds.), Historisches Wörterbuch der Philosophie (pp. 1245–1263). Basel: Schwabe.

    Google Scholar 

  • Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Treffers, A. (1979). Cijferend vermenigvuldigen en delen: (1) overzicht en achtergronden. Utrecht: Instituut Ontwikkeling Wiskunde Onderwijs.

    Google Scholar 

  • Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics instruction. Dordrecht: Reidel.

    Google Scholar 

  • UNESCO (2009). Education for all in least developed countries. Montreal: UNESCO Institute for Statistics. Retrieved from http://www.uis.unesco.org/Education/Pages/gender-education.aspx → survival rate

  • van den Heuvel-Panhuizen, M. (2001). Realistic mathematics education in the Netherlands. In J. Anghileri (Ed.), Principles and practices in arithmetic teaching (pp. 49–63). Buckingham: Open University Press.

    Google Scholar 

  • van den Heuvel-Panhuizen, M. (2003). The didactical use of models in Realistic Mathematics Education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9–35. doi:10.1023/B:EDUC.0000005212.03219.dc.

  • van Galen, F., Feijs, E., Figueiredo, N., Gravemeijer, K., van Herpen, E., & Keijzer, R. (2008). Fractions, percentages, decimals and proportions. A learning-teaching trajectory for grade 4, 5 and 6. Rotterdam: Sense Publishers.

    Google Scholar 

  • Vergnaud, G. (1996). The theory of conceptual fields. In L. P. Steffe & P. Nesher (Eds.), Theories of mathematical learning (pp. 219–239). Mahwah: Lawrence Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Prediger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glade, M., Prediger, S. Students’ individual schematization pathways - empirical reconstructions for the case of part-of-part determination for fractions. Educ Stud Math 94, 185–203 (2017). https://doi.org/10.1007/s10649-016-9716-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-016-9716-5

Keywords

Navigation