Skip to main content
Log in

Realistic scenarios of pesticide exposure alters multiple biomarkers in BOANA PULCHELLA (ANURA) Adult Frogs

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Imazethapyr, a post-emergent herbicide used in worldwide soybean and corn crops, induces genetic and biochemical alterations in aquatic vertebrates. This study examined the relationship between biomarkers at different organization levels and imazethapyr real-life route exposure in Boana pulchella adults. Frogs were exposed to imazethapyr-based formulation Pivot® H (10.59%) at concentrations representing possible acute routes: field runoff (S1:10 mg.L−1), exposure after direct foliar application (S2:100 mg.L−1) and during direct foliar application (S3:1000 mg.L−1). Post-exposure, endpoints levels were evaluated: organism alterations, biochemical activities and cytogenetic assays. Forty-eight hours post-exposure, antioxidant enzymes decrease, micronuclei induction and DNA damage were observed in all scenarios, while cholinesterase activity increase and body condition reduction were observed in frog-exposed to S3. Ninety-six hours post-exposure, frogs showed glutathione-S-transferase inhibition in S1, micronuclei induction in S2 and S3, and DNA-damage increase in S3. Herbicides routes of exposures in real-life could indicate that authorized applications have a risk to amphibian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AChE:

acetylcholinesterase

BL:

blebbed nucleus

BN:

binucleated cell

CAT:

catalase

GST:

glutathione-S-transferase

IMZT:

imazethapyr

LB:

lobed nucleus

MNs:

micronuclei

NT:

notched nucleus

PCA:

principal component analysis.

References

  • Abercrombie SA, de Perre C, Iacchetta M, Flynn RW, Sepúlveda MS, Lee LS, Hoverman JT (2020) Sublethal effects of dermal exposure to poly-and perfluoroalkyl substances on postmetamorphic amphibians. Environ Toxicol Chem 40:717–726. https://doi.org/10.1002/etc.4711

    Article  CAS  Google Scholar 

  • Agostini MG, Natale GS, Ronco AE (2009) Impact of endosulphan and cypermethrin mixture on amphibians under field use for biotech soya bean production. Int J Environ Health 3:379–389

    Article  CAS  Google Scholar 

  • Agostini MG, Kacoliris F, Demetrio P, Natale GS, Bonetto C, Ronco AE (2013) Abnormalities in amphibian populations inhabiting agroecosystems in northeastern Buenos Aires Province, Argentina. Dis Aquat Org 104:163–171. https://doi.org/10.3354/dao02592

    Article  CAS  Google Scholar 

  • Attademo AM, Peltzer PM, Lajmanovich RC, Cabagna M, Fiorenza G (2007) Plasma B-esterase and glutathione S-transferase activity in the toad Chaunus schneideri (Amphibia, Anura) inhabiting rice agroecosystems of Argentina. Ecotoxicology 16:533–539. https://doi.org/10.1007/s10646-007-0154-0

    Article  CAS  Google Scholar 

  • Attademo AM, Cabagna-Zenklusen MC, Lajmanovich RC, Peltzer PM, Junges CM, Bassó A (2011) B-esterase activities and blood cell morphology in the frog Leptodactylus chaquensis (Amphibia: Leptodactylidae) on rice agroecosystems from Santa Fe Province (Argentina). Ecotoxicology 20:274–282. https://doi.org/10.1007/s10646-010-0579-8

    Article  CAS  Google Scholar 

  • Attademo AM, Bionda CL, Peltzer PM, Lajmanovich RC, Seib SN, Basso A, Junges CM (2014) Edad, tamaño corporal en la madurez sexual, longevidad y potencial reproductivo de Leptodactylus latinasus y Leptodactylus mystacinus en un cultivo de soja y un bosque nativo del centro este de Argentina. Revista Mexicana de Biodiversidad 85:315–317. https://doi.org/10.7550/rmb.38361

    Article  Google Scholar 

  • Barni S, Boncompagni E, Grosso Bertone V, Freitas I, Fasola M, Fenoglio C (2007) Evaluation of Rana snk esculenta blood cell response to chemical stressors in the environment during the larval and adult phases. Aquat Toxicol 81:45–54. https://doi.org/10.1016/j.aquatox.2006.10.012

    Article  CAS  Google Scholar 

  • Beebee TJ, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology. Biol Conserv 125:271–285. https://doi.org/10.1016/j.biocon.2005.04.009

    Article  Google Scholar 

  • Blaustein AR, Han BA, Relyea RA, Johnson PTJ, Buck JC, Gervasi SS, Kats LB (2011) The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Ann N Y Acad Sci 1223:108–119. https://doi.org/10.1111/j.1749-6632.2010.05909.x

    Article  Google Scholar 

  • Brodeur JC, Suarez RP, Natale GS, Ronco AE, Zaccagnini ME (2011) Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotoxicol Environ Saf 74:1370–80. https://doi.org/10.1016/j.ecoenv.2011.04.024

    Article  CAS  Google Scholar 

  • Brodeur JC, Candioti JV, Soloneski S, Larramendy ML, Ronco AE (2012) Evidence of reduced feeding and oxidative stress in common tree frogs (Hypsiboas pulchellus) from an agroecosystem experiencing severe drought. J Herpetol 46:72–78. https://doi.org/10.1670/10-200

    Article  Google Scholar 

  • Brodeur JC, Damonte MJ, Vera Candioti J, Poliserpi MB, D’Andrea MF, Bahl MF (2020) Frog body condition: Basic assumptions, comparison of methods and characterization of natural variability with field data from Leptodactylus latrans. Ecol Indic 112:106098. https://doi.org/10.1016/j.ecolind.2020.106098

    Article  Google Scholar 

  • Brodeur JC, Damonte MJ, Rojas DE, Cristos D, Vargas C, Poliserpi MB, Andriulo AE (2021) Concentration of current-use pesticides in frogs from the Pampa region and correlation of a mixture toxicity index with biological effects. Environ Res 204:112354. https://doi.org/10.1016/j.envres.2021.112354

    Article  CAS  Google Scholar 

  • Brodeur JC, Vera Candioti J (2017) Impacts of agriculture and pesticides on amphibian terrestrial life stages: Potential Biomonitor/ Bioindicator Species for the Pampa Region of Argentina. In: Larramendy ML (ed) Ecotoxicology and genotoxicology-non-traditional terrestrial models. Royal society of chemistry, London, UK

  • Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3:1135. https://doi.org/10.1038/srep01135

    Article  CAS  Google Scholar 

  • Cabagna MC, Lajmanovich RC, Peltzer PM, Attademo AM, Ale E (2006) Induction of micronuclei in tadpoles of Odontophrynus americanus (Amphibia: Leptodactylidae) by the pyrethroid insecticide cypermethrin. Toxicol Environ Chem 88:729–737. https://doi.org/10.1080/02772240600903805

    Article  CAS  Google Scholar 

  • CASAFE (2013) Guía de Productos Fitosanitarios para la República Argentina. Cámara de Sanidad Agropecuaria y Fertilizantes, Buenos Aires

    Google Scholar 

  • Castillo GA, Coviello A, Orce GG (1991) Effect of theophylline on the electrolyte permeability of the isolated skin of the toad Bufo arenarum. Arch Int Physiol Biochim Biophys 99:257–264. https://doi.org/10.3109/13813459109146932

    Article  CAS  Google Scholar 

  • Castillo GA, Chanampa Y, Orce GG (2005) Effect of mercuric chloride on electrical parameters and anion fluxes in the toad skin. Comp Biochem Physiol C Toxicol Pharmacol 140:21–27. https://doi.org/10.1016/j.cca.2004.12.003

    Article  CAS  Google Scholar 

  • Çavaş T, Könen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263–268. https://doi.org/10.1093/mutage/gem012

    Article  CAS  Google Scholar 

  • Cei JM (1980) Amphibians of Argentina. Università degli Studi di Firenze, New Series Monografa

  • CONICET (2005) Reference Ethical Framework for Biomedical Research: Ethical Principles for Research with Laboratory, Farm, and Wild Animals. Consejo Nacional de Investigaciones Científicas y Técnicas. Exp. 344/99. Res. D. N° 1047. Secretaria de Ciencia, Tecnología e Innovación Productiva, Ministerio de Eduación, Ciencia y Tecnología, República Argentina. https://www.conicet.gov.ar/wp-content/uploads/OCR-RD-20050701-1047.pdf

  • Dias Martini LF, Mezzomo RF, de Avila LA, Massey JH, Marchesan E, Zanella R, Peixoto SC, Refatti JP, Cassol GV, Marques M (2013) Imazethapyr and imazapic runoff under continuous and intermittent irrigation of paddy rice. Agric Water Manag 125:26–34. https://doi.org/10.1016/j.agwat.2013.04.005

    Article  Google Scholar 

  • Edge CB, Gahl MK, Pauli BD, Thompson DG, Houlahan JE (2011) Exposure of juvenile green frogs (Lithobates clamitans) in littoral enclosures to a glyphosate-based herbicide. Ecotoxicol Environ Saf 74:1363–1369. https://doi.org/10.1016/j.ecoenv.2011.04.020

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  • Ezemonye L, Tongo I (2010) Sublethal effects of endosulfan and diazinon pesticides on glutathione-S-transferase (GST) in various tissues of adult amphibians (Bufo regularis). Chemosphere 81:214–217. https://doi.org/10.1016/j.chemosphere.2010.06.039

    Article  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104. https://doi.org/10.1038/nprot.2007.77

    Article  CAS  Google Scholar 

  • Ferrari A, Lascano C, Pechen de D’Angelo AM, Venturino A (2011) Effects of azinphos methyl and carbaryl on Rhinella arenarum larvae esterases and antioxidant enzymes. Comp Biochem Physiol C Toxicol Pharmacol 153:34–39. https://doi.org/10.1016/j.cbpc.2010.08.003

    Article  CAS  Google Scholar 

  • Ferrari A, Anguiano L, Lascano C, Sotomayor V, Rosenbaum E, Venturino A (2008) Changes in the antioxidant metabolism in the embryonic development of the common South American toad Bufo arenarum: Differential responses to pesticide in early embryos and autonomous‐feeding larvae. J Biochem Mol Toxicol 22:259–267. https://doi.org/10.1002/jbt.20236

    Article  CAS  Google Scholar 

  • Furlong ET (2001) Methods of Analysis by the US Geological Survey National Water Quality Laboratory: Determination of Pesticides in Water by Graphitized Carbon-based Solid-phase Extraction and High-performance Liquid Chromatography/mass Spectrometry (No. 1). US Department of the Interior, US Geological Survey, Water-Resource Investigations Report 1-4134. https://nwql.usgs.gov/Public/pubs/WRIR01-4134.pdf

  • Garber JC, Barbee RW, Bielitzki JT (2011) Guide for the care and use of laboratory animals. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. National Academies Press, Washington, DC

    Google Scholar 

  • Glinski DA, Henderson WM, Van Meter RJ, Purucker ST (2018) Effect of hydration status on pesticide uptake in anurans following exposure to contaminated soils. Environ Sci Pollut Res Int 25:16192–16201. https://doi.org/10.1007/s11356-018-1830-8

    Article  CAS  Google Scholar 

  • Guerra C, Aráoz E (2016) Amphibian malformations and body condition across an agricultural landscape of northwest Argentina. Dis Aquat Organ 121(2):105–116. https://doi.org/10.3354/dao03048

    Article  Google Scholar 

  • Hegde G, Krishnamurthy SV (2014) Analysis of health status of the frog Fejervarya limnocharis (Anura: Ranidae) living in rice paddy fields of Western Ghats, using body condition factor and AChE content. Ecotoxicol Environ Contam 9:69–76. https://doi.org/10.5132/eec.2014.01.009

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755. https://doi.org/10.1038/35008052

    Article  CAS  Google Scholar 

  • Howarth FG (2000) Non-target effects of biological control agents. In: Biological control: measures of success. Springer, pp 369–403

  • INTA (2008) Guía para cuidado y uso de animales para experimentación. Centro de Investigación en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA), Secretaría de Agricultura, Ganadería, Pesca y Alimentación, República Argentina (Eds.)

  • IUCN (2020) The IUCN Red List of Threatened Species. Version 2020-3. Retrieved December 8, 2020, from https://www.iucnredlist.org

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. https://doi.org/10.2307/1939574

    Article  Google Scholar 

  • Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23(3):207–221. https://doi.org/10.1093/mutage/gen014

    Article  CAS  Google Scholar 

  • Jolliffe IT, Cadima J (2016) Principal Component Analysis: A review and recent developments. Philosophical Transactions of the Royal Society, 374. https://doi.org/10.1098/rsta.2015.0202

  • Kawai K, Kaku K, Izawa N, Shimizu T, Fukuda A, Tanaka Y (2007) A novel mutant acetolactate synthase gene from rice cells, which confers resistance to ALS-inhibiting herbicides. Journal of Pesticide Science 32(2):89–98. https://doi.org/10.1584/jpestics.G06-40

    Article  CAS  Google Scholar 

  • Kegley SE, Hill BR, Orme S, Choi AH (2020) PAN Pesticide database. Pesticide action network. PAN557Pesticide database website, Oakland, CA. Retrieved March 19, 2020, from https://www.pesticideinfo.org

  • Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian population declines. Nature 410:681–684. https://doi.org/10.1038/35070552

    Article  CAS  Google Scholar 

  • Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond. Science 341:759–765. https://doi.org/10.1126/science.1237591

    Article  CAS  Google Scholar 

  • Kuhn EC, Tavares Jacques M, Teixeira D, Meyer S, Gralha T, Roehrs R, Camargo S, Schwerdtle T, Bornhorst J, Silva Ávila D (2021) Ecotoxicological assessment of Uruguay River and affluents pre- and post-pesticides’ application using Caenorhabditis elegans for biomonitoring. Environ Sci Pollut Res 28:21730–21741

    Article  CAS  Google Scholar 

  • Kwet A, Aquino L, Lavilla E, di Tada I (2004) Hypsiboas pulchellus, Red List of Threatened Species. International Union for Conservation of Nature. Version 2012.2.

  • Lajmanovich RC, Cabagna M, Peltzer PM, Stringhini GA, Attademo AM (2005) Micronucleus induction in erythrocytes of the Hyla pulchella tadpoles (Amphibia: Hylidae) exposed to insecticide endosulfan. Mutat Res 587:67–72

    Article  CAS  Google Scholar 

  • Lajmanovich RC, Peltzer PM, Attademo AM, Colussi CL, Martinuzzi CS (2018) Blood biomarkers of common toad Rhinella arenarum following chlorpyrifos dermal exposure. Interdiscip Toxicol 11:148–154. https://doi.org/10.2478/intox-2018-0011

    Article  CAS  Google Scholar 

  • Leiva-Presa À, Munro Jenssen B (2006) Effects of p, p′-DDE on retinoid homeostasis and sex hormones of adult male European common frogs (Rana temporaria). J Toxicol Environ Health A 69:2051–2062. https://doi.org/10.1080/15287390600747676

    Article  CAS  Google Scholar 

  • Lin K, Xu C, Zhou S, Liu W, Gan J (2007) Enantiomeric separation of imidazolinone herbicides using chiral high‐performance liquid chromatography. Chirality 19:171–178. https://doi.org/10.1002/chir.20359

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  Google Scholar 

  • Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: Review of the risks in a complex environment. Env Pol 157:2903–2927. https://doi.org/10.1016/j.envpol.2009.05.015

    Article  CAS  Google Scholar 

  • Van Meter RJ, Glinski DA, Purucker ST, Henderson WM (2018) Influence of exposure to pesticide mixtures on the metabolomic profile in post-metamorphic green frogs (Lithobates clamitans). Sci Total Environ 624:1348–1359. https://doi.org/10.1016/j.scitotenv.2017.12.175

    Article  CAS  Google Scholar 

  • Van Meter RJ, Adelizzi R, Glinski DA, Henderson WM (2019) Agrochemical mixtures and amphibians: the combined effects of pesticides and fertilizer on stress, acetylcholinesterase activity, and bioaccumulation in a terrestrial environment. Environ Toxicol Chem 38:1052–1061. https://doi.org/10.1002/etc.4375

    Article  CAS  Google Scholar 

  • Van Meter RJ, Glinski DA, Hong T, Cyterski M, Henderson WM, Purucker ST (2014) Estimating terrestrial amphibian pesticide body burden through dermal exposure. Environ Pollut 193:262–268. https://doi.org/10.1016/j.envpol.2014.07.003

    Article  CAS  Google Scholar 

  • Van Meter RJ, Glinski DA, Henderson WM, Garrison AW, Cyterski M, Purucker ST (2015) Pesticide uptake across the amphibian dermis through soil and overspray exposures. Arch Environ Contam Toxicol 69:545–556. https://doi.org/10.1007/s00244-015-0183-2

    Article  CAS  Google Scholar 

  • Moraes BS, Clasen B, Loro VL, Pretto A, Toni C, de Avila LA, Marchesan E, de Oliveira Machado SL, Zanella R, Reimche GB (2011) Toxicological responses of Cyprinus carpio after exposure to a commercial herbicide containing imazethapyr and imazapic. Ecotoxicol Environ Saf 74:328–335. https://doi.org/10.1016/j.ecoenv.2009.05.013

    Article  CAS  Google Scholar 

  • Newman MC (2014) Fundam Ecotoxicol Sci Pollut. CRC press, Boca Ratón, Florida

    Book  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen N (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149. https://doi.org/10.1016/s1382-6689(02)00126-6

    Article  Google Scholar 

  • Ossana NA, Castañé PM, Salibián A (2013) Use of Lithobates catesbeianus tadpoles in a multiple biomarker approach for the assessment of water quality of the Reconquista River (Argentina). Arch Environ Contam Toxicol 65:486–497. https://doi.org/10.1007/s00244-013-9920-6

    Article  CAS  Google Scholar 

  • Pasha F (2013) Enzyme inhibition (AChE) in brain of Oreochromis mossambicus due to pesticidal pollution of herbicide Pursuit. J Biol Sci 1:91–100. https://doi.org/10.21608/EAJBSC.2013.16114

    Article  Google Scholar 

  • Pasha F, Singh R (2005) Enzyme inhibition (AChE) in muscles and skin of Oreochromis mossambicus due to pesticidal pollution of herbicide Pursuit. Asian. J Exp Sci 19:119–126

    CAS  Google Scholar 

  • Peltzer PM, Lajmanovich RC, Sánchez-Hernandez JC, Cabagna MC, Attademo AM, Bassó A (2008) Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotoxicol Environ Saf 70(1):185–197. https://doi.org/10.1016/j.ecoenv.2007.06.005

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Brodeur JC, Larramendy ML (2020) An imazethapyr-based herbicide formulation induces genotoxic, biochemical, and individual organizational effects in Leptodactylus latinasus tadpoles (Anura: Leptodactylidae). Environ Sci Pollut Res Int 27:2131–2143. https://doi.org/10.1007/s11356-019-06880-7

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Natale GS, Soloneski S, Larramendy ML (2018) Are the damaging effects induced by the imazethapyr formulation Pivot® H in Boana pulchella (Anura) reversible upon ceasing exposure? Ecotoxicol Environ Saf 148:1–10. https://doi.org/10.1016/j.ecoenv.2017.10.009

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Soloneski S, Nikoloff N, Natale GS, Larramendy ML (2015) Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 119:15–24. https://doi.org/10.1016/j.ecoenv.2015.04.045

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Ruiz de Arcaute C, Natale GS, Soloneski S, Larramendy ML (2017) Evaluation of imazethapyr-induced DNA oxidative damage by alkaline Endo III-and Fpg-modified single-cell gel electrophoresis assay in Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 142:503–508. https://doi.org/10.1016/j.ecoenv.2017.04.054

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Franco-Belussi L, Moreno L, Tripole S, de Oliveira C, Natale GS (2016) Effects of glyphosate on hepatic tissue evaluating melanomacrophages and erythrocytes responses in neotropical anuran Leptodactylus latinasus. Environ Sci Pollut Res Int 23:9852–9861. https://doi.org/10.1007/s11356-016-6153-z

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Ruiz de Arcaute CR, Nikoloff N, Dury L, Soloneski S, Natale GS, Larramendy ML (2014) The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 104:120–126

    Article  Google Scholar 

  • Pérez-Iglesias JM, Fanali LZ, Franco-Belussi L, Natale GS, De Oliveira C, Brodeur JC, Larramendy ML (2021) Multiple Level Effects of Imazethapyr on Leptodactylus latinasus (Anura) Adult Frogs. Arch Environ Contam Toxicol 81:492–506

    Article  Google Scholar 

  • Pitarque M, Creus A, Marcos R, Hughes JA, Anderson D (1999) Examination of various biomarkers measuring genotoxic endpoints from Barcelona airport personnel. Mutat Res 440:195–204

    Article  CAS  Google Scholar 

  • Quaranta A, Bellantuono V, Cassano G, Lippe C (2009) Why amphibians are more sensitive than mammals to xenobiotics. PLoS ONE 4(11):e7699. https://doi.org/10.1371/journal.pone.0007699

    Article  CAS  Google Scholar 

  • R Core Team (2010) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

  • Sanchez LC, Peltzer PM, Lajmanovich RC, Manzano AS, Junges CM, Attademo AM (2013) Reproductive activity of anurans in a dominant agricultural landscape from central-eastern Argentina. Revista Mexicana de Biodiversidad 84:912–926. https://doi.org/10.7550/rmb.32842

    Article  Google Scholar 

  • Sansiñena JA, Peluso L, Costa CS, Demetrio PM, Mac Loughlin TM, Marino DJ, Alcalde L, Natale GS (2018) Evaluation of the toxicity of the sediments from an agroecosystem to two native species, Hyalella curvispina (CRUSTACEA: AMPHIPODA) and Boana pulchella (AMPHIBIA: ANURA), as potential environmental indicators. Ecological indicators 93:100–110

    Article  Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass–size residuals: validating body condition indices. Ecology 86:155–163. https://doi.org/10.1890/04-0232

    Article  Google Scholar 

  • Selcer KW, Verbanic JD (2014) Vitellogenin of the northern leopard frog (Rana pipiens): development of an ELISA assay and evaluation of induction after immersion in xenobiotic estrogens. Chemosphere 112:348–354

    Article  CAS  Google Scholar 

  • Shutler D, Marcogliese DJ (2011) Leukocyte profiles of northern leopard frogs, Lithobates pipiens, exposed to pesticides and hematozoa in agricultural wetlands. Copeia 301–307. https://doi.org/10.1643/CP-10-065

  • Sparling DW, Linder G, Bishop CA, Krest SK (2010) Ecotoxicology of amphibians and reptiles. SETAC Books, Boca Raton, FL

  • Suárez RP, Zaccagnini ME, Babbitt KJ, Calamari NC, Natale GS, Cerezo A, Codugnello N, Boca T, Damonte MJ, Vera-Candioti J (2016) Anuran responses to spatial patterns of agricultural landscapes in Argentina. Landsc Ecol 31:2485–2505. https://doi.org/10.1007/s10980-016-0426-2

    Article  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone‐tolerant crops: history, current status and future. Pest Manag Sci 61:246–257. https://doi.org/10.1002/ps.993

    Article  CAS  Google Scholar 

  • USEPA (1975) Methods for acute toxicity tests with fish, macroinvertebrates, andamphibians. In: Agency, U.E.P. (Ed.). USEPA. 660/3-75-009,62

  • USEPA (1989) Imazethapyr Herbicide Profle 3/89. Chemical Fact Sheet for Imazethapyr. United States Environmental Protection Agency, Ofce of Pesticide Programs, Washington DC. 196 pp

  • Vaira M, Akmentins M, Attademo M, Baldo D, Barrasso D, Barrionuevo S, Basso N, Blotto B, Cairo S, Cajade R, Céspedez J, Corbalán V, Chilote P, Duré M, Falcione C, Ferraro D, Gutierrez FR, Ingaramo MR, Junges C, Lajmanovich R, Lescano JN, Marangoni F, Martinazzo L, Marti L, Moreno L, Natale G, Pérez Iglesias JM, Peltzer P, Quiroga L, Rosset S, Sanabria E, Sanchez L, Schaefer E, Úbeda C, Zaracho V (2012) Categorización del estado de conservación de los anfibios de la República Argentina. Cuadernos de Herpetología 26:131–159

    Google Scholar 

  • Vasseur P, Cossu-Leguille C (2003) Biomarkers and community indices as complementary tools for environmental safety. Environ Int 28:711–717. https://doi.org/10.1016/S0160-4120(02)00116-2

    Article  CAS  Google Scholar 

  • Vera Candioti J, Natale GS, Soloneski S, Ronco AE, Larramendy ML (2010) Sublethal and lethal effects on Rhinella arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing technical formulation insecticide Aficida®. Chemosphere 78:249–255. https://doi.org/10.1016/j.chemosphere.2009.10.064

    Article  CAS  Google Scholar 

  • Wake DB (1991) Declining amphibian populations. Science 253:860. https://doi.org/10.1126/science.253.5022.860

    Article  CAS  Google Scholar 

  • Walker CH (2009) Organic pollutants: an ecotoxicological perspective. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wang MZ, Jia XY (2009) Low levels of lead exposure induce oxidative damage and DNA damage in the testes of the frog Rana nigromaculata. Ecotoxicology 18:94–99. https://doi.org/10.1007/s10646-008-0262-5

    Article  CAS  Google Scholar 

  • Zar JH (2010) Biostatistical Analysis, 5 ed. Prentice Hall, New Jersey

    Google Scholar 

Download references

Funding

This study was funded by Doctoral Internal Scholarships Granting Institution: National Commission for Scientific and Technical Research (CONICET). Grants File No. 11/N817 and 11/N847, Research Project at the National University of La Plata: “Empleo de herramientas bioanalíticas de respuesta temprana a la exposición de contaminantes emergentes en sistemas in vivo e in vitro. Facultad de Ciencias Naturales y Museo. Project I + D: 11/N746”, the project from Agencia Nacional de Promoción Científica y Tecnológica (FONCYT): PICT 2015-3137 “Desarrollo y aplicación de herramientas de diagnóstico de contaminación ambiental utilizando anuros autóctonos como indicadores”, and to the Research Project 2019-PE-E2-I054 Funded by INTA.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Pérez-Iglesias, J.M. (JMPI), Brodeur, J.C. (JCB), Natale, G.S. (GSN) and Larramendy, M.L (MLL). The first draft of the manuscript was written by JMPI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization: JMPI, JCB, GSN and MLL; Methodology: JMPI, JCB, GSN and MLL; Formal analysis and investigation: JMPI, JCB, and MLL; Writing – original draft preparation: JMPI; Writing – review and editing: JCB and MLL; Funding acquisition and Resources: JCB, GSN and MLL; Supervision: JCB and MLL.

Corresponding author

Correspondence to J. M. Pérez-Iglesias.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

The authors have consented to the submission.

Consent to publish

The authors give their consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text to be published in the above Journal and Article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Iglesias, J.M., Natale, G.S., Brodeur, J.C. et al. Realistic scenarios of pesticide exposure alters multiple biomarkers in BOANA PULCHELLA (ANURA) Adult Frogs. Ecotoxicology 32, 309–320 (2023). https://doi.org/10.1007/s10646-023-02639-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02639-6

Keywords

Navigation