Skip to main content
Log in

Toxic effects of pyrethroids in tadpoles of Physalaemus gracilis (Anura: Leptodactylidae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Pyrethroid insecticides are one of the most commonly used pesticide groups, but these compounds have brought risks to non-target species, such as amphibians. This study evaluated the toxicological effects (mortality, swimming activity and oral morphology) caused to a South American species of anuran amphibian, Physalaemus gracilis, exposed to the pyrethroids cypermethrin and deltamethrin. Total spawnings of this anuran were collected in the natural environment and transported to the laboratory where they were kept under controlled conditions. Chronic assays were defined between 0.1 and 0.01 mg L−1 of cypermethrin, and 0.009 and 0.001 mg L−1 of deltamethrin. For cypermethrin, a further chronic toxicity test was performed at 0.05 and 2.0 mg L−1, with hatchlings at stages S.20–S.25. Cypermethrin and deltamethrin were lethal enough to kill over 70% of exposed tadpoles in 1 week at concentrations that can be found in nature (0.01–0.1 mg L−1). The exposure effects also influenced swimming activity and caused changes in oral morphology, which would make it difficult for the animals to survive in their natural habitat. Both pyrethroids presented a risk for P. gracilis, so they should be re-evaluated for non-target wild species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achaval F, Olmos A (2007) Guía de anfibios y reptiles del Uruguay. 3rd edn. Graphis, Montevideo

  • Agostini GM, Natale GS, Ronco AE (2010) Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicology 19:1545–1550

    Article  CAS  Google Scholar 

  • ANVISA (2019) Agência Nacional de vigilância Sanitária. National Health Surveillance Agency. Ministry of Health, Brazil. http://portal.anvisa.gov.br/registros-e-autorizacoes/agrotoxicos/produtos/monografia-de-agrotoxicos/autorizadas. Acessed 19 Jun 2019

  • Aydin-Sinan H, Güngördü A, Ozmen M (2012) Toxic effects of deltamethrin and λ-cyhalothrin on Xenopus laevis tadpoles. J Environ Sci Health Part B 47:397–402

    Article  CAS  Google Scholar 

  • Bellinato DF, Viana-Medeiros PF, Araújo SC, Martins AJ, Lima JBP, Valle D (2016) Resistance status to the insecticides temephos, deltamethrin, and diflubenzuron in Brazilian Aedes aegypti populations, BioMed Res Int 2016. https://doi.org/10.1155/2016/8603263

    Article  Google Scholar 

  • Belluta I, Almeida AA, Coelho IC, Nascimento AB, A. Silva MM (2010) Avaliação temporal e espacial no córrego do Cintra (Botucatu – SP) frente aos defensivos agrícolas e parâmetros físico-químicos de qualidade da água—Um estudo de caso. Energ na Agricultura 25:54–73

    Article  Google Scholar 

  • Bhutia D, Rai BK, Pal J (2015) Hepatic cytochrome P450 as biomarkers of cypermethrin toxicity in freshwater teleost, Channa punctatus (Bloch). Braz Arch Biol Technol 58:131–136. https://doi.org/10.1590/S1516-8913201400049

    Article  CAS  Google Scholar 

  • Biga LM, Blaustein AR (2013) Variations in lethal and sublethal effects of cypermethrin among aquatic stages and species of anuran amphibians. Environ Toxicol Chem 32:2855–2860. https://doi.org/10.1002/etc.2379

    Article  CAS  Google Scholar 

  • Boelaert M, Burza S, Romero G (2018) Control and public health aspects. In: Bruschi F, Gradoni L (eds) The leishmaniases: old neglected tropical diseases. Springer. https://doi.org/10.1007/978-3-319-72386-0_10

    Chapter  Google Scholar 

  • Borges-Martins M, Colombo P, Zank C, Becker FG, Melo MTQ (2007) Anfíbios. In: Becker FG, Ramos RA, Moura LA (eds) Biodiversidade: Regiões da Lagoa do Casamento e dos Butiazais de Tapes, Planície Costeira do Rio Grande do Sul, Ministério do Meio Ambiente, Brasília, p 276–291

  • BRASIL (2014) Health Department of Rio Grande do Sul State, N° 320. Porto Alegre, RS, Brazil. https://www.legisweb.com.br/legislacao/?id=269539. Acessed 5 Sept 2018

  • Bridges CM (1997) Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environ Toxicol Chem 16:1935–1939. https://doi.org/10.1002/etc.5620160924

    Article  CAS  Google Scholar 

  • Buggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. ILAR J 3:260–269

    Article  Google Scholar 

  • Camargo A, Sarroca M, Maneyro R (2008) Reproductive effort and the egg number vs. size trade-off in Physalaemus frogs (Anura: Leiuperidae). Acta Oecologica 34:163–171. https://doi.org/10.1016/j.actao.2008.05.003

    Article  Google Scholar 

  • Chicati ML, Nanni MR, Cézar E (2012) Chemical contamination of water in irrigated rice on Paraná State, Brazil. Semina 33:1455–146. https://doi.org/10.5433/1679-0359.2012v33n4p1455

    Article  CAS  Google Scholar 

  • Clark GG, Fernandez-Salas I (2013) Mosquito vector biology and control in Latin America—a 23rd symposium. J Am Mosq Control Assoc 29:251–269. https://doi.org/10.2987/13-6356.1

    Article  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419 https://doi.org/10.3390/ijerph8051402

    Article  CAS  Google Scholar 

  • David M, Marigoudar RS, Patil KV, Halappa R (2012) Behavioral, morphological deformities and biomarkers of oxidative damage as indicators of sublethal cypermethrin intoxication on the tadpoles of D. melanostictus (Schneider, 1799). Pestic Biochem Physiol 2:127–134

    Article  Google Scholar 

  • Del Sarto MCL, Oliveira EE, Guedes RNC, Campos LAO (2014) Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie 5:626–636

    Article  Google Scholar 

  • Duaví WC, Gama AF, Morais PCV, de Oliveira AHB, do Nascimento RF, Cavalcante RM (2015) Contamination of aquatic environments by “urban pesticides”: the case of Cocó and Ceará rivers, fortaleza—Ceará, Brazil. Quimica Nova 38(5):622–630. https://doi.org/10.5935/0100-4042.20150055

    Article  CAS  Google Scholar 

  • Edwards R, Millburn P, Hutson DH (1986) Comparative toxicity of cis-cypermethrin in rainbow trout, frog, mouse and quail. Toxicol Appl Pharmacol 84:512–522

    Article  CAS  Google Scholar 

  • Franca MT, Paiva TCB, Marcantônio AS, Teixeira PC, Ferreira CM (2015) Acute toxicity and ecotoxicological risk assessment of rice pesticides to Lithobates catesbeianus tadpoles. J Environ Sci Health Part B 50:406–410. https://doi.org/10.1080/03601234.2015.1011950

    Article  CAS  Google Scholar 

  • Galardo AKR, Póvoa MM, Sucupira IMC, Galardo CD, dos Santos RLC (2015) Anopheles darlingi and Anopheles marajoara (Diptera: Culicidae) susceptibility to pyrethroids in an endemic area of the Brazilian Amazon. Rev da Soc Brasileira de Med Tropical 48(6):765–769. https://doi.org/10.1590/0037-8682-0082-2015

    Article  Google Scholar 

  • Gentile AG, Sartini JL, Campos MC, Sánchez JF (2004) Air temperature elevation as an alternative for the control of deltamethrin-resistant Triatoma infestans (Hemiptera, Reduviidae). Cad de Saúde Pública 20(4):1014–1019

    Article  Google Scholar 

  • Giddings J, Dobbs M, McGee S, Henry K, Mitchell G, McCoole M, Allen R, Whatling P, Freedlander D, Jackson S, Hendley P, Ritter A, Desmarteau D, Holmes C, Wirtz J, Campana D (2014) Higher-tier risk characterization of agricultural uses of synthetic pyrethroids: species sensitivity distributions, species response distributions, risk quotients, joint probability curves, and risk statements. Poster Pirethroid working group. US task force. http://www.complianceservices.com/wp-content/uploads/2014/08/Giddings_IUPAC-2014_Risk-characterization-poster.pdf. Acessed 29 Sept 2019

  • Gosner KL (1960) A simplified table for staging anuran embryos and tadpoles with notes on identification. Herpetologica 3:183–189

    Google Scholar 

  • Greulich K, Pflugmacher S (2003) Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat Toxicol 3:329–336

    Article  Google Scholar 

  • Greulich K, Pflugmacher S (2004) Uptake and effects on detoxication enzymes of cypermethrin in embryos and tadpoles of amphibians. Arch Environ Contam Toxicol 47:489–495. https://doi.org/10.1007/s00244-004-2302-3

    Article  CAS  Google Scholar 

  • Grisolia CK (2005) Agrotóxicos: mutações, câncer e reprodução. Universidade de Brasília, Brasília

  • Gutiérrez Y, Santos HP, Serrão JE, Oliveira EE (2016) Deltamethrin-mediated toxicity and cytomorphological changes in the midgut and nervous system of the mayfly Callibaetis radiates. PLoS One 11. https://doi.org/10.1371/journal.pone.0152383

    Article  Google Scholar 

  • Hill RA, Chapmann PM, Mann GS, Lawrence GS (2000) Level of detail in ecological risk assessments. Mar Pollut Bull 40(6):471–477. https://doi.org/10.1016/S0025-326X(00)00036-9

    Article  CAS  Google Scholar 

  • Izaguirre MF, Lajmanovich RC, Peltzer PM, Soler AP, Casco VH (2000) Cypermethrin-induced apoptosis in the telencephalon of Physalaemus biligonigerus tadpoles (Anura: Leptodactylidae). Bull Environ Contam Toxicol 4:501–507

    Article  Google Scholar 

  • Izaguirre MF, Marín L, Vergara MN, Lajmanovich RC, Peltzer P, Casco VH (2006) Modelos experimentales de anuros para estudiar los efectos de piretroides. Cienc, Docencia y Tecnolía 32:181–206

    Google Scholar 

  • Jabeen F, Chaudhry AS, Manzoor S, Shaheen T (2015) Examining pyrethroids, carbamates and nicotenoids in fish, water and sediments from the Indus river for potential health risks. Environ Monit Assess 187–29. https://doi.org/10.1007/s10661-015-4273-4

  • Junges CM, Maglianese MI, Lajmanovich RC, Peltzer PM, Atademo AM (2017) Acute toxicity and etho-toxicity of three insecticides used for mosquito control on Amphibian tadpoles Water Air Soil Pollut 228:143. https://ez372.periodicos.capes.gov.br/, https://doi.org/10.1007/s11270-017-3324-6

  • Kaneko H (2011) Pyrethroids: mammalian metabolism and toxicity. J Agric Food Chem 59:2786–2791. https://doi.org/10.1021/jf102567z

    Article  CAS  Google Scholar 

  • Kouba AJ, Lloyd RE, Houck ML, Silla AJ, Calatayud N, Trudeau VL, Clulow J, Molina F, Langhorne C, Vance C, Arregui L, Germano J, Lermen D, Della Togna G (2013) Emerging trends for bio banking amphibian genetic resources: the hope, reality and challenges for the next decade. Biol Conserv 164:10–21. https://doi.org/10.1016/j.biocon.2013.03.010

    Article  Google Scholar 

  • Kumar A, Singh SP, Bhakuni RS (2005) Secondary metabolites of chrysanthemum genus and their biological activities. Curr Sci 89(9):1489–1501. http://www.jstor.org/stable/24110912

    CAS  Google Scholar 

  • Lajmanovich RC, Cabagna-Zenkusen MC, Attademo AM, Jungesc M, Peltzer PM, Bassó A, Lorenzatti E (2014) Inducion of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with glifosinate –ammonium. Mutat Res 769:7–12. https://doi.org/10.1016/j.mrgentox.2014.04.009

    Article  CAS  Google Scholar 

  • Lavilla E, Kwet A, Segalla MV, Baldo JLD (2010) Physalaemus gracilis. the iUCN red list of threatened species. https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T57258A11610839.en. Acessed 19 Jun 2019

  • Leite PZ, Margarido TCS, Lima D, Rossa-Feres DC, Almeida EA (2010) Esterase inhibition in tadpoles of Scinax fuscovarius (Anura, Hylidae) as a biomarker for exposure to organophosphate pesticides. Environ Sci Pollut Res Int 8:1411–1421

    Article  Google Scholar 

  • Loebmann D (2005) Guia Ilustrado: Os anfíbios da região costeira do extremo sul do Brasil. Coleção manuais de campo. USEB, Pelotas

  • Lutnicka H, Bogacka T, Wolska L (1999) Degradation of pyrethroids in an aquatic ecosystem model. Water Res 33(16):3441–3446. https://doi.org/10.1016/S0043-1354(99)00054-8

    Article  CAS  Google Scholar 

  • Macagnan N, Rutkoski CF, Kolcenti C, Vanzetto VV, Macagnan L, Sturza P, Hartmann PA, Hartmann MT (2017) Toxicity of cypermethrin and deltamethrin insecticides on embryos and larvae of Physalaemus gracilis (Anura:Leptodactylidae). Environ Sci Pollut Res 24:20699–20704. https://doi.org/10.1007/s11356-017-9727-5

    Article  CAS  Google Scholar 

  • Majumder R, Kajirav A (2015) Variations in acute toxicity between technical grade and commercial formulation of cypermethrin to some non-target freshwater organisms. Int J Curr Res 7(6):16755–16759

    CAS  Google Scholar 

  • Mantzosab N, Karakitsouac A, Helac I, Konstantinoua D (2016) Environmental fate of the insecticide cypermethrin applied as microgranular and emulsifiable concentrate formulations in sunflower cultivated field plots. Sci Total Environ 541:542–550. https://doi.org/10.1016/j.scitotenv.2015.09.11

    Article  Google Scholar 

  • Marino D, Ronco EA (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75(4):820–826

    Article  CAS  Google Scholar 

  • Materna EJ, Rabeni CF, Lapoint TW (1995) Effects of the synthetic pyrethroid insecticide, esfenvalerate, on girinol leopard frogs (Rana spp.). Environ Toxicol Chem 14:613–622. https://doi.org/10.1002/etc.5620140409

    Article  CAS  Google Scholar 

  • McDiarmid RW, Altig R (1999) Tadpoles: the biology of anuran. The University of Chicago Press, Chicago and London

    Google Scholar 

  • McKnight US, Rasmussen JJ, Kronvang B, Binning PJ, Bjerg PL (2015) Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams. Environ Pollut 200:64–76. https://doi.org/10.1016/j.envpol.2015.02.015

    Article  CAS  Google Scholar 

  • Mendes MC, Lima CKP, Nogueira AHC, Chiebao DP, Gabriel FHL, Ueno TEH, Namindome A, Klafke GM (2011) Resistance to cypermethrin, deltamethrin and chlorpyriphos in populations of Rhipicephalus (Boophilus) microplus (Acari:Ixodidae) from small farms of the State of São Paulo, Brazil. Vet Parasitol 178(3-4):383–388. https://doi.org/10.1016/j.vetpar.2011.01.006

    Article  CAS  Google Scholar 

  • Montanha FP, Pimpão CT (2012) Efeitos Toxicológicos de Piretróides (Cipermetrina e Deltametrina) em peixes—Revisão. Rev Científica Eletrônica de Med Veterinária 18:58

    Google Scholar 

  • Moraes R, Elfvendahl S, Kylin H, Molander S (2003) Pesticide residues in rivers of a Brazilian rain forest reserve: assessing the potential concern for effects on freshwater biota and human health. Ambio 4:258–263. https://doi.org/10.1579/0044-7447-32.4.258

    Article  Google Scholar 

  • Moreira LFB, Knauth DS, Maltchik L (2014) Checklist of amphibians in a rice paddy area in the Uruguayan savanna, southern Brazil. Check List 10(5):1014–1019

    Article  Google Scholar 

  • Moreira LFB, Moura RG, Maltchik L (2016) Stop and ask for directions? Factors affecting anuran detection and occupancy in Pampa farmland ponds. Ecol Researcher 31:65–74. https://doi.org/10.1007/s11284-015-1316-9

    Article  Google Scholar 

  • Narahashi T (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci 13:236–241

    Article  CAS  Google Scholar 

  • Peltzer PM, Lajmanovich RC, Sanchez LC, Attademo A, Junges C, Bionda CL, Martino A, Bassó A (2011) Morphological abnormalities in amphibian populations from the mid-eastern region of Argentina. Herpetological Conserv Biol 3:432–442

    Google Scholar 

  • Pérez-Iglesias JM, Soloneski S, Nikoloff N, Natale GS, Larramendy ML (2015) Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 119:15–24

    Article  Google Scholar 

  • Ribeiro DS, Pereira TS (2016) Our every day life pesticide. O agrotóxico nosso de cada dia. Rev de ciências da saúde 28:14–26

    Google Scholar 

  • Rodríguez MM, Crespo A, Hurtado D, Fuentes I, Rey J, Bisset JA (2017) Diagnostic doses of insecticides for adult Aedes aegypti to assess insecticide resistance in Cuba. J Am Mosq Control Assoc 33:142–144. https://doi.org/10.2987/16-6593.1

    Article  Google Scholar 

  • Rutkoski CF, Macagnan N, Kolcenti C, Vanzetto VV, Sturza P, Hartmann PA, Hartmann MT (2018) Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch Environ Contamination Toxicol 74(4):587–593. https://doi.org/10.1007/s00244-017-0501-y

    Article  CAS  Google Scholar 

  • Saillenfait AM, Ndiaye D, Sabaté JP (2015) Pyrethroids: esposure and health effects—an update. Int J Hyg Environ Health 218:281–292. https://doi.org/10.1016/j.ijheh.2015.01.002

    Article  CAS  Google Scholar 

  • Salibián A (1992) Effects of deltamethrin on the South American toad, Bufo arenarum, Tadpoles. Bull Environ Contam Toxicol 48:616–621

    Article  Google Scholar 

  • Sánchez-Bayo F (2012) Insecticides mode of action in relation to their toxicity to non-target organisms. J Environ Analytic Toxicol S4(002):1–9. https://doi.org/10.4172/2161-0525.S4-002

    Article  Google Scholar 

  • Santana JM, Reis A, Teixeira PC, Ferreira FC, Ferreira CM (2015) Median lethal concentration of formolaldehyde and its genotoxic potential in bullfrog tadpoles (Lithobates catesbeianus). J Environ Sci Health Part B 1–5, https://doi.org/10.1080/03601234.2015.1067095

    Article  CAS  Google Scholar 

  • Santos MAT, Areas MA, Reyes FGR (2007) Piretróides—Uma visão geral. Alimentos e Nutrção 3:339–349

    Google Scholar 

  • Silva HSVP, Santos CL, Ferreira Pereira SR, Luvizotto Santos R, Andrade GV, Nunes GS (2013) Toxicidade aguda e genotoxicidade do agrotóxico comercial folisuper 600BR a girinos de Physalaemus cuvieri (Anura: Leiuperidae). Pesticidas 23:1–10

    Google Scholar 

  • Smith TM, Stratton GW (1986) Effects of synthetic pyrethroid insecticides on nontarget organisms. In: Gunther FA (ed) Residue reviews, 97. Springer, New York, NY

    Chapter  Google Scholar 

  • Solomon KR, Takacs P (2001) Probabilistic risk assessment using species sensitivity distributions In: Postuma L, Traas T, Suter GW (eds), Species sensitivity distributions in risk assessment, CRC Press, Boca Raton, FL

    Google Scholar 

  • Svartz G, Meijide F, Coll CP (2016) Effects of a fungicide formulation on embryo-larval development, metamorphosis, and gonadogenesis of the South American toad Rhinella arenarum. Environ Toxicol Pharmacol 45:1–7. https://doi.org/10.1016/j.etap.2016.05.008

    Article  CAS  Google Scholar 

  • Svartz GV, Pérez-Coll CS (2013) Comparative toxicity of cypermethrin and a commercial formulation on Rhinella arenarum larval development (Anura: Bufonidae). Int J Environ Health 6. https://doi.org/10.1504/IJENVH.2013.056973

    Article  CAS  Google Scholar 

  • Todeschini BH (2013) Avaliação da presença de agrotóxicos por cromatografia líquida acoplada a espectrometria de massas em águas superficiais e na rede pública de abastecimento de água no Rio Grande do Sul. Dissertation, Universidade Federal de Santa Catarina, Florianópolis

  • USEPA (2019) United States Environmental Protection Agency. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-0. Acessed 11 Jun 2019

  • Velásquez TMT, Muñoz LMH, Bautista MHB (2017) Toxicidad aguda del insecticida cipermetrina (Cypermon® 20 EC) en cuatro especies de anuros colombianos. Acta Biológica Colombiana 22(3):340–347. https://doi.org/10.15446/abc.v22n3.62631

    Article  Google Scholar 

  • Viran R, Unlu EF, Polat H, Koçak O (2003) Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata). Ecotoxicol Environ Saf 1:82–85

    Article  Google Scholar 

  • Vitt LJ, Caldwell JP (2014) Herpetology: an introductory biology of Amphibians and Reptiles. 4th edn. Elsevier, USA

    Chapter  Google Scholar 

  • Wrubleswski J, Reichert Júnior FW, Galon L, Hartmann PA, Hartmann MT (2018) Acute and chronic toxicity of pesticides on tadpoles of Physalaemus cuvieri (Anura, Leptodactylidae). Ecotoxicology 27:360–368. https://doi.org/10.1007/s10646-018-1900-1

    Article  CAS  Google Scholar 

  • Yilmaz Ş, Çömelekoğlu Ü, Coşkun B, Balli E, Özge A (2008) Effects of cypermethrin on isolated frog sciatic nerve: an ultrastructural study. Turkish J Med Sci 38(2):121–125

    CAS  Google Scholar 

  • Yu S, Wages MR, Cai Q, Maul JD, Cobb GP (2013) Lethal and sublethal effects of three insecticides on two developmental stages of Xenopus laevis and comparison whit other amphibians. Environ Toxicol Chem 9:2056–2064

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gregori B. Bieniek for technical support. We are grateful to the Federal University of Fronteira Sul—UFFS for providing logistical support. Camila Rutkoski, Natani Macagnan and Cassiane Kolcenti were supported by fellowship from Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul—FAPERGS. This study is financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brazil (CAPES), finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilia T. Hartmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was developed under ethical conditions and in accordance with national, international and institutional guidelines on the use of animals in the research. It was licensed by IBAMA (50398-1) and authorised by the Ethics Committee for Animal Use of the Federal University of Fronteira Sul.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanzetto, G.V., Slaviero, J.G., Sturza, P.F. et al. Toxic effects of pyrethroids in tadpoles of Physalaemus gracilis (Anura: Leptodactylidae). Ecotoxicology 28, 1105–1114 (2019). https://doi.org/10.1007/s10646-019-02115-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02115-0

Keywords

Navigation