Skip to main content
Log in

Measuring cytochrome P450 activity in aquatic invertebrates: a critical evaluation of in vitro and in vivo methods

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The first step in xenobiotic detoxification in aquatic invertebrates is mainly governed by the cytochrome P450 mixed function oxidase system. The ability to measure cytochrome P450 activity provides an important tool to understand macroinvertebrates’ responses to chemical stressors. However, measurements of P450 activity in small aquatic invertebrates have had variable success and a well characterized assay is not yet available. The general lack of success has been scarcely investigated and it is therefore the focus of the present work. In particular, the suitability of the substrate selected for the assay, the sensitivity of the assay and the possible inhibition/attenuation of enzymatic activity caused by endogenous substances were investigated. 7-ethoxycoumarin-O-dealkylation activity of Daphnia magna, Chironomus riparius larvae and Hyalella azteca was assessed in vivo and in vitro and possible inhibition of enzymatic activity by macroinvertebrates homogenate was investigated. Activities of D. magna and C. riparius larvae measured in vivo were 1.37 ± 0.08 and 2.2 ± 0.2 pmol h−1 organism−1, respectively, while activity of H. azteca could not be detected. In vitro activity could be measured in C. riparius larvae only (500–1000 pmol h−1 mg microsomal protein−1). The optimization of the in vitro assay has been especially long and resource consuming and particularly for D. magna, substances that inhibited cytochrome P450 activity seemed to be released during tissue homogenization preventing activity measurements in vitro. We therefore recommend testing the P450 inhibition potential of homogenate preparations prior to any investigation of P450 activity in vitro in macroinvertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

BSA:

Bovine serum albumin

DTT:

DL-dithiothreitol

ECOD:

7-ethoxycoumarin-O-dealkylation

EDTA:

Ethylenediaminetetraacetic acid disodium salt dihydrate

EROD:

7-ethoxyresorufin-O-dealkylation

K2HPO4·3H2O:

Potassium phosphate dibasic trihydrate

KH2PO4 :

Potassium dihydrogen phosphate

MFO:

Mixed function oxidase

MgCl2·6H2O:

Magnesium chloride hexahydrate

NADPH:

ß-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate

PMSF:

Phenylmethanesulfonyl fluoride

References

  • Aitio A (1978) A simple and sensitive assay of 7-ethoxycoumarin in deethylation. In: Leonard BJ (ed) Toxicological aspects of food safety, vol 1., Archives of toxicologySpringer, Berlin, p 275. doi:10.1007/978-3-642-66896-8_53

    Chapter  Google Scholar 

  • Anand SS, Bruckner JV, Haines WT, Muralidhara S, Fisher JW, Padilla S (2006) Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Toxicol Appl Pharmacol 212:156–166. doi:10.1016/j.taap.2005.07.021

    Article  CAS  Google Scholar 

  • Anderson TD, Zhu KY (2004) Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomus tentans (Diptera : Chironomidae). Pestic Biochem Physiol 80:54–64. doi:10.1016/j.pestbp.2004.06.003

    Article  CAS  Google Scholar 

  • Bach J, Snegaroff J (1989) Effects of the fungicide prochloraz on xenobiotic metabolism in Rainbow trout: in vivo induction. Xenobiotica 19:1–9

    Article  CAS  Google Scholar 

  • Baldwin WS, Leblanc GA (1994) Identification of multiple steroid hydroxylases in Daphnia magna and their modulation by xenobiotics. Environ Toxicol Chem 13:1013–1021. doi:10.1897/1552-8618(1994)13[1013:iomshi]2.0.co;2

    Article  CAS  Google Scholar 

  • Belden JB, Lydy MJ (2000) Impact of atrazine on organophosphate insecticide toxicity. Environ Toxicol Chem 19:2266–2274. doi:10.1897/1551-5028(2000)019<2266:ioaooi>2.3.co;2

    Article  CAS  Google Scholar 

  • Binelli A, Ricciardi F, Riva C, Provini A (2006) New evidences for old biomarkers: effects of several xenoblotics on EROD and AChE activities in Zebra mussel (Dreissena polymorpha). Chemosphere 62:510–519. doi:10.1016/j.chemosphere.2005.06.033

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Brander SM, Werner I, White JW, Deanovic LA (2009) Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations. Environ Toxicol Chem 28:1493–1499

    Article  CAS  Google Scholar 

  • Brattsten LB, Wilkinson CF (1973) A microsomal enzyme inhibitor in the gut contents of the house cricket (Acheta domesticus). Comp Biochem Phys Part B Comp Biochem 45:59–70. doi:10.1016/0305-0491(73)90284-8

    Article  CAS  Google Scholar 

  • Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9:e96580. doi:10.1371/journal.pone.0096580

    Article  CAS  Google Scholar 

  • Cedergreen N, Kamper A, Streibig JC (2006) Is prochloraz a potent synergist across aquatic species? A study on bacteria, daphnia, algae and higher plants. Aquat Toxicol 78:243–252. doi:10.1016/j.aquatox.2006.03.007

    Article  CAS  Google Scholar 

  • Chalvet-Monfray K, Belzunces LP, Colin ME, Fleche C, Sabatier P (1996) Synergy between deltamethrin and prochloraz in bees: modeling approach. Environ Toxicol Chem 15:525–534. doi:10.1897/1551-5028(1996)015<0525:sbdapi>2.3.co;2

    Article  CAS  Google Scholar 

  • Daborn P, Boundy S, Yen J, Pittendrigh B, Ffrench-Constant R (2001) DDT resistance in drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics 266:556–563. doi:10.1007/s004380100531

    Article  CAS  Google Scholar 

  • David RM, Jones HS, Panter GH, Winter MJ, Hutchinson TH, Chipman JK (2012) Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna. Chemosphere 88:912–917. doi:10.1016/j.chemosphere.2012.03.018

    Article  CAS  Google Scholar 

  • EPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd edn. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533. doi:10.1146/annurev.ento.44.1.507

    Article  CAS  Google Scholar 

  • Fisher T, Crane M, Callaghan A (2003) Induction of cytochrome P-450 activity in individual Chironomus riparius meigen larvae exposed to xenobiotics. Ecotoxicol Environ Saf 54:1–6. doi:10.1016/s0147-6513(02)00031-3

    Article  CAS  Google Scholar 

  • Gagnaire B, Geffard O, Noury P, Garric J (2010) In vivo indirect measurement of cytochrome P450-associated activities in freshwater gastropod molluscs. Environ Toxicol 25:545–553. doi:10.1002/tox.20515

    Article  CAS  Google Scholar 

  • Gilbert MD, Wilkinson CF (1975) An inhibitor of microsomal oxidation from gut tissues of the honey bee (Apis mellifera). Comp Biochem Phys Part B Comp Biochem 50:613–619. doi:10.1016/0305-0491(75)90099-1

    Article  CAS  Google Scholar 

  • Glockner R, Muller D (1995) Ethoxycoumarin O-deethylation (ECOD) activity in rat-liver slices exposed to beta-naphthoflavone (BNF) in vitro. Exp Toxicol Pathol 47:319–324

    Article  CAS  Google Scholar 

  • Godin SJ, Crow JA, Scollon EJ, Hughes MF, DeVito MJ, Ross MK (2007) Identification of rat and human cytochrome P450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate. Drug Metab Dispos Biol Fate Chem 35:1664–1671

    Article  CAS  Google Scholar 

  • Gonzalez-Mendoza D (2007) Enzymatic complex cytochrome P450 in plants. Rev Int Contam Ambient 23:177–183

    CAS  Google Scholar 

  • Guengerich FP (2005) Human cytochrome P450 enzymes. In: de Ortiz Montellano P (ed) Cytochrome P450. Springer, New York, pp 377–530. doi:10.1007/0-387-27447-2_10

    Chapter  Google Scholar 

  • Hawker DW, Connell DW (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol Environ Saf 11:184–197. doi:10.1016/0147-6513(86)90063-1

    Article  CAS  Google Scholar 

  • James MO (1984) Catalytic properties of cytochrome P-450 in hepatopancreas of the Spiny lobster, Panulirus argus. Marine Environ Res 14:1–11. doi:10.1016/0141-1136(84)90066-7

    Article  CAS  Google Scholar 

  • James MO, Boyle SM (1998) Cytochromes P450 in crustacea. Comp Biochem Phys C-Pharmacol Toxicol Endocrinol. 121:157–172. doi:10.1016/s0742-8413(98)10036-1

    Article  CAS  Google Scholar 

  • Johnson RM, Dahlgren L, Siegfried BD, Ellis MD (2013) Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One 8:e54092. doi:10.1371/journal.pone.0054092

    Article  CAS  Google Scholar 

  • Jones HS, Panter GH, Hutchinson TH, Chipman JK (2010) Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo. Zebrafish 7:23–30. doi:10.1089/zeb.2009.0630

    Article  CAS  Google Scholar 

  • Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotechnology Where do cytochromes P450 come from, what do they do and what can they do for us? Philosophical Trans R Soc B-Biol Sci 368:17. doi:10.1098/rstb.2012.0476

    Article  CAS  Google Scholar 

  • Koenig S, Fernandez P, Sole M (2012) Differences in cytochrome P450 enzyme activities between fish and crustacea: relationship with the bioaccumulation patterns of polychlorobiphenyls (PCBs). Aquat Toxicol 108:11–17. doi:10.1016/j.aquatox.2011.10.016

    Article  CAS  Google Scholar 

  • Komagata O, Kasai S, Tomita T (2010) Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem Mol Biol 40:146–152. doi:10.1016/j.ibmb.2010.01.006

    Article  CAS  Google Scholar 

  • Kotze AC (2000) Oxidase activities in macrocyclic-resistant and -susceptible Haemonchus contortus. J Parasitol 86:873–876. doi:10.1645/0022-3395(2000)086[0873:oaimra]2.0.co;2

    Article  CAS  Google Scholar 

  • Kretschmann A, Ashauer R, Hitzfeld K, Spaak P, Hollender J, Escher BI (2011) Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna. Environ Sci Technol 45:4980–4987. doi:10.1021/es1042386

    Article  CAS  Google Scholar 

  • Livingstone DR (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Phys a-Mol Integr Phys 120:43–49. doi:10.1016/s1095-6433(98)10008-9

    Article  CAS  Google Scholar 

  • Mayer RT, Jermyn JW, Burke MD, Prough RA (1977) Methoxyresorufin as a substrate for fluorometric assay of insect microsomal O-dealkylases. Pestic Biochem Physiol 7:349–354. doi:10.1016/0048-3575(77)90038-4

    Article  CAS  Google Scholar 

  • Mokry LE, Hoagland KD (1990) Acute toxicities of five synthetic pyrethroid insecticides to Daphnia magna and Ceriodaphnia dubia. Environ Toxicol Chem 9:1045–1051. doi:10.1002/etc.5620090811

    Article  CAS  Google Scholar 

  • Moon JY, Lee DW, Park KH (1998) Inhibition of 7-ethoxycoumarin O-deethylase activity in rat liver microsomes by naturally occurring flavonoids: structure-activity relationships. Xenobiotica 28:117–126. doi:10.1080/004982598239623

    Article  CAS  Google Scholar 

  • Nillos MG, Chajkowski S, Rimoldi JM, Gan J, Lavado R, Schlenk D (2010) Stereoselective biotransformation of permethrin to estrogenic metabolites in fish. Chem Res Toxicol 23:1568–1575. doi:10.1021/tx100167x

    Article  CAS  Google Scholar 

  • Noury P, Geffard O, Tutundjian R, Garric J (2006) Non destructive in vivo measurement of ethoxyresorufin biotransformation by zebrafish prolarva: development and application. Environ Toxicol 21:324–331. doi:10.1002/tox.20184

    Article  CAS  Google Scholar 

  • OECD (2004) Test no. 202: Daphnia sp. Acute immobilisation test. In: OECD guidelines for the testing of chemicals, section 2: effects on biotic systems. Organisation for Economic Co-operation and Development

  • OECD (2010) Test no. 233: sediment-water chironomid life-cycle toxicity test using spiked water or spiked sediment. In: OECD guidelines for the testing of chemicals, section 2: effects on biotic systems. Organisation for Economic Co-operation and Development

  • OECD (2011) Test no. 235: Chironomus sp., acute immobilisation test. In: OECD guidelines for the testing of chemicals, section 2: effects on biotic systems. Organisation for Economic Co-operation and Development

  • OECD (2012) Test no. 211: Daphnia magna reproduction test. In: OECD guidelines for the testing of chemicals, section 2: effects on biotic systems. Organisation for Economic Co-operation and Development

  • Ong CE, Pan Y, Mak JW, Ismail R (2013) In vitro approaches to investigate cytochrome P450 activities: update on current status and their applicability. Expert Opin Drug Metab Toxicol 9:1097–1113. doi:10.1517/17425255.2013.800482

    CAS  Google Scholar 

  • Orrenius S, Berggren M, Moldeus P, Krieger RI (1971) Mechanism of inhibition of microsomal mixed-function oxidation by gut-contents inhibitor of southern armyworm (Prodenia-eridania). Biochem J 124:427–430

    Article  CAS  Google Scholar 

  • Pilling ED, Bromleychallenor KAC, Walker CH, Jepson PC (1995) Mechanism of synergism between the pyrethroid insecticide lambda-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis-mellifera L.). Pestic Biochem Physiol 51:1–11. doi:10.1006/pest.1995.1001

    Article  CAS  Google Scholar 

  • Rewitz KF, Styrishave B, Lobner-Olesen A, Andersen O (2006) Marine invertebrate cytochrome P450: emerging insights from vertebrate and insect analogies. Comp Biochem Phys C-Toxicol Pharmacol 143:363–381. doi:10.1016/j.cbpc.2006.04.001

    Article  CAS  Google Scholar 

  • Routti H, Letcher RJ, Arukwe A, van Bavel B, Yoccoz NG, Chu SG, Gabrielsen GW (2008) Biotransformation of PCBs in relation to phase I and II xenobiotic-metabolizing enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic sea. Environ Sci Technol 42:8952–8958. doi:10.1021/es801682f

    Article  CAS  Google Scholar 

  • Rubach MN, Ashauer R, Maund SJ, Baird DJ, Van den Brink PJ (2010) Toxicokinetic variation in 15 freshwater arthropod species exposed to the insecticide chlorpyrifos. Environ Toxicol Chem 29:2225–2234. doi:10.1002/etc.273

    Article  CAS  Google Scholar 

  • Sigma-Aldrich (2013) Bradford Reagent : Technical bulletin. http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/b6916bul.pdf

  • Snyder MJ (2000) Cytochrome P450 enzymes in aquatic invertebrates: recent advances and future directions. Aquat Toxicol 48:529–547. doi:10.1016/s0166-445x(00)00085-0

    Article  CAS  Google Scholar 

  • Stevenson BJ et al (2011) Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 41:492–502. doi:10.1016/j.ibmb.2011.02.003

    Article  CAS  Google Scholar 

  • Sturm A, Hansen PD (1999) Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotoxicol Environ Saf 42:9–15. doi:10.1006/eesa.1998.1721

    Article  CAS  Google Scholar 

  • Tian SM, Pan LQ, Zhang H (2014) Identification of a CYP3A-like gene and CYPs mRNA expression modulation following exposure to benzo a pyrene in the bivalve mollusk Chlamys farreri. Marine Environ Res 94:7–15. doi:10.1016/j.marenvres.2013.11.001

    Article  CAS  Google Scholar 

  • Timbrell JA (2008) Factors affecting toxic responses: metabolism. In: Principles of biochemical toxicology, 4th edn. CRC Press, pp 75–127. doi:10.3109/9781420007084-5

  • Uno T, Ishizuka M, Itakura T (2012) Cytochrome P450 (CYP) in fish. Environ Toxicol Pharmacol 34:1–13. doi:10.1016/j.etap.2012.02.004

    Article  CAS  Google Scholar 

  • Valles SM, Yu SJ (1996) German cockroach (Dictyoptera: Blattellidae) gut contents inhibit cytochrome P450 monooxygenases. J Econ Entomol 89:1508–1512

    Article  Google Scholar 

  • Vanderweiden MEJ, Tibosch HJH, Bleumink R, Sinnige TL, Vandeguchte C, Seinen W, Vandenberg M (1993) Cytochrome P450 1a induction in the Common carp (Cyprinus carpio) following exposure to contaminated sediments with halogenated polyaromatics. Chemosphere 27:1297–1309. doi:10.1016/0045-6535(93)90177-7

    Article  Google Scholar 

  • Venkatakrishnan K, von Moltke LL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 38:111–180. doi:10.2165/00003088-200038020-00002

    Article  CAS  Google Scholar 

  • Waxman DJ, Chang TK (2006) Use of 7-ethoxycoumarin to monitor multiple enzymes in the human CYP1, CYP2, and CYP3 families. Methods Mol Biol 320:153–156. doi:10.1385/1-59259-998-2:153

    CAS  Google Scholar 

  • Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013) Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean Hyalella azteca. Proc Natl Acad Sci 110:16532–16537. doi:10.1073/pnas.1302023110

    Article  Google Scholar 

  • Yang Y, Chen S, Wu S, Yue L, Wu Y (2006) Constitutive overexpression of multiple cytochrome P450 genes associated with pyrethroid resistance in Helicoverpa armigera. J Econ Entomol 99:1784–1789

    Article  CAS  Google Scholar 

  • Zelnickova L et al (2013) Biochemical markers for the assessment of pollution of selected small streams in the Czech Republic. Neuroendocrinol Lett 34:109–115

    CAS  Google Scholar 

  • Zhang M, Scott JG (1996) Cytochrome b5 is essential for cytochrome P450 6D1-mediated cypermethrin resistance in LPR House flies. Pestic Biochem Physiol 55:150–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank laboratory technician Anja Weibell for taking good care of the organisms’ cultures and Post Doc Tomas Laursen for his suggestions on the cytochrome P450 in vitro assay as well as for solving practical issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Gottardi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottardi, M., Kretschmann, A. & Cedergreen, N. Measuring cytochrome P450 activity in aquatic invertebrates: a critical evaluation of in vitro and in vivo methods. Ecotoxicology 25, 419–430 (2016). https://doi.org/10.1007/s10646-015-1600-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1600-z

Keywords

Navigation