Skip to main content
Log in

Effects of humic acid and ionic strength on TiO2 nanoparticles sublethal toxicity to zebrafish

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The stability and bioavailability of titanium dioxide nanoparticles (TiO2 NPs) suspension could be modified by the physicochemical properties of solution. In the present study, the effect of humic acid (HA) and ionic strength (by adding NaCl) on aggregation and sedimentation of TiO2 NPs suspension were investigated. Accordingly, the sublethal toxicity of TiO2 NPs suspensions with different HA and NaCl concentrations toward zebrafish (Danio rerio) was evaluated by monitoring the changes of superoxide dismutase, catalase, malonaldehyde and glutathione in gill, liver and intestine. The results showed that the aggregations formation and hydrodynamic diameter of TiO2 NPs in suspensions are not essential characteristics to decide toxicity. The varied oxidative stress responses detected in gill, liver and intestine derived from different toxicity mechanisms of TiO2 NPs. Nevertheless, the oxidative stress could be suppressed by the adding of HA and/or the increase of ionic strength, which can decrease the bioavailability of TiO2 NPs in water. The study suggests that the environmental factors, such as HA and ionic strength, are important for the fate (aggregation and sedimentation) and toxicity of nanomaterials in aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ates M, Daniels J, Arslan Z, Farah IO (2013) Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess 185:3339–3348

    Article  CAS  Google Scholar 

  • Bolis V, Busco C, Ciarletta M, Distasi C, Erriquez J, Fenoglio I, Livraghi S, Morel S (2012) Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J Colloid Interface Sci 369:28–39

    Article  CAS  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374

    Article  CAS  Google Scholar 

  • Clemente Z, Castro VL, Jonsson CM, Fraceto LF (2012) Ecotoxicology of nano-TiO2—an evaluation of its toxicity to organisms of aquatic ecosystems. Int J Environ Res 6:33–50

    CAS  Google Scholar 

  • Clemente Z, Castro VL, Feitosa LO, Lima R, Jonsson CM, Maia AHN, Fraceto LF (2013) Fish exposure to nano-TiO2 under different experimental conditions: methodological aspects for nanoecotoxicology investigations. Sci Total Environ 463:647–656

    Article  Google Scholar 

  • De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246:116–127

    Article  Google Scholar 

  • Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    Article  CAS  Google Scholar 

  • Hao LH, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110

    Article  CAS  Google Scholar 

  • Hao LH, Wang ZY, Xing BS (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). Journal of Environmental Sciences-China 21:1459–1466

    Article  CAS  Google Scholar 

  • Hu XG, Mu L, Kang J, Lu KC, Zhou RR, Zhou QX (2014) Humic acid acts as a natural antidote of graphene by regulating nanomaterial translocation and metabolic fluxes in vivo. Environ Sci Technol 48:6919–6927

    Article  CAS  Google Scholar 

  • Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356

    Article  CAS  Google Scholar 

  • Jiang JK, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Lee BC, Kim KT, Cho JG, Lee JW, Ryu TK, Yoon JH, Lee SH, Duong CN, Eom IC, Kim PJ, Choi KH (2012) Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 nanoparticles. Mol Cell Toxicol 8:357–366

    Article  CAS  Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684

    Article  CAS  Google Scholar 

  • Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH (2010) Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 4:120–137

    Article  CAS  Google Scholar 

  • Palaniappan PR, Pramod KS (2010) FTIR study of the effect of nTiO(2) on the biochemical constituents of gill tissues of zebrafish (Danio rerio). Food Chem Toxicol 48:2337–2343

    Article  CAS  Google Scholar 

  • Ramsden CS, Henry TB, Handy RD (2013) Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–413

    Article  CAS  Google Scholar 

  • Truong L, Zaikova T, Richman EK, Hutchison JE, Tanguay RL (2012) Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology 6:691–699

    Article  CAS  Google Scholar 

  • Von der Kammer F, Ottofuelling S, Hofmann T (2010) Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ Pollut 158:3472–3481

    Article  Google Scholar 

  • Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110

    Article  CAS  Google Scholar 

  • Xiong DW, Fang T, Yu LP, Sima XF, Zhu WT (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  Google Scholar 

  • Yang SP, Bar-Ilan O, Peterson RE, Heideman W, Hamers RJ, Pedersen JA (2013) Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ Sci Technol 47:4718–4725

    Article  CAS  Google Scholar 

  • Yu LP, Fang T, Xiong DW, Zhu WT, Sima XF (2011) Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, (OH)-O-center dot production and particle dissolution in distilled water. J Environ Monit 13:1975–1982

    Article  CAS  Google Scholar 

  • Zhu XS, Zhu L, Duan ZH, Qi RQ, Li Y, Lang YP (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A 43:278–284

    Article  CAS  Google Scholar 

  • Zhu XS, Wang JX, Zhang XZ, Chang Y, Chen YS (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20:8532–8536

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07103-003) and the National Natural Science Foundation of China (21477159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fang.

Ethics declarations

Ethical standards

We confirm that the study performed was strictly in accordance with acceptable ethical procedures.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Yu, L.P., Zhang, W.C. et al. Effects of humic acid and ionic strength on TiO2 nanoparticles sublethal toxicity to zebrafish. Ecotoxicology 24, 2054–2066 (2015). https://doi.org/10.1007/s10646-015-1541-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1541-6

Keywords

Navigation