Skip to main content
Log in

A review of tonic immobility as an adaptive behavior in sharks

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Tonic immobility remains one of the least understood behaviors in nature. Despite this, the behavior has been described in a diversity of species across the animal kingdom. Tonic immobility has been observed in sharks and rays both in the laboratory and field. However, actual scientific studies of tonic immobility have been completed on only a few species of elasmobranchs. The behavior is frequently induced by handling an animal in a certain way rather than utilizing chemical anesthesia in order to assess body condition and implant electronic tracking devices. This behavior functions as (1) an innate defensive passive response against a predatory attack, (2) a component of courtship and copulation, and (3) a protective mechanism limiting the effect of overwhelming sensory stimulation. We present a review of the behavioral, physiological, and neurological processes that result in tonic immobility in sharks, and compare this information to the processes of tonic immobility that are better understood in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  • Bandler R, Carrive P, Depaulis A (1991) Emerging principles of organization in the midbrain periaqueductal gray matter. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization. Plenum press, New York, pp 1–8

    Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17:379–389

    Article  CAS  PubMed  Google Scholar 

  • Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. In: Holstege G, Bandler R, Saper CB (eds) The emotional motor system. Prog Brain Res 107. Elsevier Science BV, Amsterdam, pp 285–300

  • Bodznick D (1991) Elasmobranch vision: multimodal integration in the brain. J Exp Zool 5(Supp):108–116

    Google Scholar 

  • Bonfil R, Meÿer M, Scholl MC, Johnson R, O´Brien S, Oosthuizen H. (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310(5745):100–103. https://doi.org/10.1126/science.1114898

    Article  CAS  PubMed  Google Scholar 

  • Bres M (1993) The behaviour of sharks. Rev Fish Biol Fish 3(2):133–159

    Article  Google Scholar 

  • Brooks EJ, Sloman KA, Liss S, Hassan-Hassanein L, Danylchuk AJ, Cooke SJ, Mandelman JW, Skomal GB, Sims DW, Suski CD (2011) The stress physiology of extended duration tonic immobility in the juvenile lemon shark, Negaprion brevirostris (Poey, 1868). J Exp Mar Biol Ecol 409:351–360

    Article  Google Scholar 

  • Brunnschweiler JM, Pratt HL Jr (2008) Putative male–male agonistic behavior in free-living zebra sharks, Stegostoma fasciatum. Open Fish Sci J 1:23–27

    Article  Google Scholar 

  • Carli G, Lefebvre L, Silvano G, Vierucci S (1976) Suppression of accompanying reactions to prolonged noxious stimulation during animal hypnosis in the rabbit. Exp Neurol 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Carrier JC, Pratt HL Jr (2004) Group reproductive behaviors in free-living nurse sharks, Ginglymostoma cirratum. Copeia 1994:646–656

    Article  Google Scholar 

  • Clayton L, Seeley KE (2019) Sharks and medicine. In: Miller RE, Lamberski N, Calle PP (eds) Fowler’s zoo and wild animal medicine current therapy. Elsevier Inc. Missouri.Vol 9 pp 338–344

  • Compagno LJV (1999) Checklist of living elasmobranches. In: Hamlet WC (ed) Sharks, skates, & rays. Johns Hopkins University Press, Baltimore MD, The biology of elasmobranch fishes, pp 471–498

    Google Scholar 

  • Dannemann JP, White WJ, Marshall WK, Lang CM (1988) An evaluation of analgesia associated with the immobility response in laboratory rabbits. Lab Animal Sci 38:51–56

    Google Scholar 

  • Davie PS, Franklin CE, Grigg GC (1993) Blood pressure and heart rate during tonic immobility in the black tipped reef shark. Carcharhinus Melanoptera Fish Physiol Biochem 12(2):95–100

    Article  CAS  PubMed  Google Scholar 

  • De Swaef E, Vercauteren M, Pieraets L, Declercq AM (2020) Fight, flight or freeze. Tonic immobility in sharks. Vlaams Diergeneeskd Tijdschr 89:243–250

    Article  Google Scholar 

  • Fleischmann A, Urca G (1993) Tail-pinch induced analgesia and immobility: altered responses to noxious tail-pinch by prior pinch of the neck. Brain Res 601:28–33

    Article  CAS  PubMed  Google Scholar 

  • Gallup GG Jr (1974) Animal hypnosis: factual status of a fictional concept. Psychol Bull 81:836–853

    Article  PubMed  Google Scholar 

  • Gallup GG Jr (1977) Tonic immobility: the role of fear and predation. Psychol Rec 1:41–61

    Article  Google Scholar 

  • Gallup GG Jr, Maser JD (1977) Tonic immobility: evolutionary underpinnings of human catalepsy and catatonia. In: Seligman MEP (ed) Psychopathology: experimental models. Freeman WH, New York, pp 334–457

    Google Scholar 

  • Gruber SH, Keyes RS (1981) Keeping sharks for research. In: Hawkings AD (ed) Aquarium systems. Academic Press, London, pp 373–402

    Google Scholar 

  • Henningsen AD (1994) Tonic immobility in 12 elasmobranchs: use as an aid in captive husbandry. Zoo Biol 13:325–332

    Article  Google Scholar 

  • Hofmann MH (1999) Nervous system. In: Hamlet WC (ed) Sharks, skates, & rays. Johns Hopkins University Press, Baltimore MD, The biology of elasmobranch fishes, pp 273–299

    Google Scholar 

  • Holland KN, Wetherbee BM, Lowe CG, Meyer CG (1999) Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters. Mar Biol 134:665–673

    Article  Google Scholar 

  • Hoyos-Padilla EM, Klimley AP, Galván-Magaña F, Antoniou A (2016) Contrasts in the movements and habitat use of juvenile and adult white sharks (Carcharodon carcharias) at Guadalupe Island. Mexico Anim Biotelemetry 4:14. https://doi.org/10.1186/s40317-016-0106-7

    Article  Google Scholar 

  • Humphreys RK, Ruxton GD (2018) A review of thanatosis (death feigning) as an anti-predator behaviour. Behav Ecol Sociobiol 72:22. https://doi.org/10.1007/s00265-017-2436-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones RB (1986) The tonic immobility reaction of the domestic fowl: a review. Worlds Poult Sci J 42:82–96

    Article  Google Scholar 

  • Kessel ST, Hussey NE (2015) Tonic immobility as an anaesthetic for elasmobranch during surgical implantations procedures. Can J Fish Aquat Sci 72:1287–1291

    Article  Google Scholar 

  • Kingsbury MA, Kelly AM, Schrock SE, Goodson JL (2011) Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus. PLoS One 6(6):e20720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittelberger JM, Land BR, Bass AH (2006) Midbrain periaqueductal gray and vocal patterning in a teleost fish. J Neurophysiol 96(1):71–85

    Article  PubMed  Google Scholar 

  • Klemm WR (2001) Behavioral arrest: in search of neural control system. Prog Neurobiol 65:453–471

    Article  CAS  PubMed  Google Scholar 

  • Klimley AP (1980) Observations of courtship and copulation in the nurse shark, Ginglymostoma cirratum. Copeia 1980:878–882

    Article  Google Scholar 

  • Klimley AP (1985) Schooling in the large predator, Sphyrna lewini, a species with low risk of predation: a non-egalitarian state. Zeitschrift für Tierpsychologie (=Ethology) 70:297–319

    Article  Google Scholar 

  • Kreidl A (1916) Uber hypnose bei Fschen. Pfluger’s Arch Gen Physiol 164:441–444

    Article  Google Scholar 

  • Kozlowska K, Walker P, McLean L, Carrive P (2015) Fear and the defense cascade: clinical implications and management. Harvard Rev Psychiat 23(4):263287. https://doi.org/10.1097/HRP.0000000000000065

    Article  Google Scholar 

  • Leite-Panissi CR, Rodrigues CL, Brentegani MR, Menescal-De-Oliveira L (2001) Endogenous opiate analgesia induced by tonic immobility in guinea pigs. Brazil J Med Biol Res 34:245–250

    Article  CAS  Google Scholar 

  • Lissman HW (1946) The neurological basis of the locomotory rhythm in the spinal dogfish (Scyallum canicula, Acanthias vulgaris) I. Reflex Behavior. J Exp Zool 23:143–161

    Google Scholar 

  • Mangold E (1920) Die tierische hypnose (Einschliesslich tonische tetanische und Totsell-reflex: Reactions- Akinese der Protisten). Ergelon Physiol 18:79–117

    Article  Google Scholar 

  • Miranda A, De La Cruz F, Zamudio SR (2006) Immobility response elicited by clamping the neck induces antinociception in a “tonic pain” test in mice. Life Sci 79:1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Miranda PA, Vázquez LP, Martínez ML, Sandoval HV, Villanueva BI, Zamudio HSR (2014) The effects of orexin A and orexin B on two forms of immobility responses and on analgesia. Adv Neuroim Biol 5:235–242. https://doi.org/10.3233/NIB-140092

    Article  Google Scholar 

  • Miranda PA, Zamudio SR, Vázquez LP, Campos RC, Ramírez SJE (2016) Involvement of opioid and GABA systems in the ventrolateral periaqueductal gray on analgesia associated with tonic immobility. Pharmacol Biochem Behav 142:72–78

    Article  Google Scholar 

  • Miyatake T, Nakayama S, Nishi Y, Nakajima S (2009) Tonically immobilized selfish prey can survive by sacrificing others. Proc R Soc 276:2763–2767

    Google Scholar 

  • Monassi CR, Leite-Panissi CR, Menescal-de-Oliveira L (1999) Ventrolateral periaqueductal gray matter and the control of tonic immobility. Brain Res Bull 50:201–208

    Article  CAS  PubMed  Google Scholar 

  • Morgan M, Whitney P, Gold M (1998) Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray. Brain Res 804:159–166

    Article  CAS  PubMed  Google Scholar 

  • Morgan M, Clayton C (2005) Defensive behaviors evoked from the ventrolateral periaqueductal of the rat: comparison of opioid and GABA disinhibition. Behav Brain Res 164:61–66

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz AK (2004) “Scared stiff”: catatonia as evolutionary-based fear response. Psychol Rev 111(4):984–1002

    Article  PubMed  Google Scholar 

  • Mukharror DA, Susiloningtyas D, Ichsan M (2019) Tonic immobility induction and duration on halmahera walking shark (Hemischyllium halmahera). IOP C Ser Earth Env 404:012080

    Article  Google Scholar 

  • Myrberg AA, Gruber SH (1974) The behavior of the bonnethead shark, Sphyrna lewini. Copeia 1974:358–374

    Article  Google Scholar 

  • Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Am Zool 17:411–429

    Article  Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Arlington VA: Office of Naval Research, pp 117–193

  • Pyle P, Schramm MJ, Keiper C, Anderson SD (1999) Predation on a white shark (Carcharodon carcharias) by a killer whale (Orcinus orca) and a possible case of competitive displacement. Mar Mam Sci 15(2):563–568

  • Ramos CM, Souza SLF, Menescal OL (2008) Modulation of tonic immobility in guinea pig PAG by homocysteic acid, a glutamate agonist. Physiol Behav 94:468–473

    Article  Google Scholar 

  • Ratner SC (1967) Comparative aspects of hypnosis. In: Gordon JE (ed) Handbook of clinical and experimental hypnosis. McMillan, New York

  • Reese WG, Angel C, Newton JEO (1984) Immobility reactions: a modified classification. Pay J Biol Sci Jul-Sept:137–143

  • Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164(3878):444–445

    Article  CAS  PubMed  Google Scholar 

  • Schaefer JG (1921) Uber den lagerreflextonus von Raja clavata. Biol Zentrabl 41:291–295

    Google Scholar 

  • Tricas TC, Deacon K, Last P, McCosker JE, Walker TI, Taylor L (1997) Sharks and rays. Taylor L (ed) Sydney, Reader's Digest

  • Vázquez LP, Mendoza RLG, Ramírez SJE, Chamorro CGA, Miranda PA (2017) Analgesic and anxiolytic effects of [Leu31, Pro34]-neuropeptide Y microinjected into the periaqueductal gray in rats. Neuropeptides 66:81–89

    Article  Google Scholar 

  • Vázquez LP, Miranda PA, Valencia FK, Sánchez CA (2022) Defensive and emotional behavior modulation by serotonin in the periaqueductal gray. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-022-01262-z

    Article  Google Scholar 

  • Watsky MA, Gruber SH (1990) Induction and duration of tonic immobility in the lemon shark Negaprion brevirostris. Fish Physiol Biochem 8:207–210

    Article  CAS  PubMed  Google Scholar 

  • Wells RMG, McNeil H, McDonald JA (2005) Fish hypnosis: induction of an atonic immobility reflex. Marine Behav Physiol 38(1):71–78. https://doi.org/10.1080/10236240400029341

    Article  Google Scholar 

  • Whitman PA (1984) Tonic immobility in juvenile sandbar sharks, Carcharhinus plumbeus (Nardo, 1827) (Pisces, Carcharhinidae). M. S. thesis, Univ West Va. Morgantown WV, USA

  • Whitman PA, Marshal JA, Keller BC Jr (1986) Tonic immobility in the smooth dogfish shark, Mustelus canis (Pisces, Carcharinidae). Copeia 3:829–832

    Article  Google Scholar 

  • Williamson MJ, Dudgeon C, Slade R (2018) Tonic immobility in the zebra shark, Stegostoma fasciatum, and its use for capture methodology. Environ Biol Fish 101:741–748

    Article  Google Scholar 

  • Wilson AL (2004) Death feigning: an adaptive, antipredator response. Bio 755 # 1, pp 1–5. https://people.eku.edu/rithcisong/behavcol/awilson_feigning.pdf

  • Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69(4):280–300. https://doi.org/10.1159/000100037

  • Yopak KE, McMeans BC, Mull CG, Feindel KW, Kovacs KM, Lydersen C, Fisk AT, Collin SP (2019) Comparative brain morphology of the Greenland and Pacific sleeper sharks and its functional implications. Sci Rep 9:10022. https://doi.org/10.1038/s41598-019-462255

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida M (2021) Immobility behaviors in fish: a comparison with other vertebrates. In: Sakai M (ed) Death-feigning in insects. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-33-6598-8_11

Download references

Acknowledgements

We are grateful for the funds provided by the Instituto Politécnico Nacional (SIP 20210587). EMHP and AMP are fellows of SNI (CONACYT) Mexico. Authors thanks to Dr. Priscila Vázquez-León for the supplied material, and the anonymous reviewers whose comments allow improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have been involved throughout the review and participated significantly to the writing. Specifically: conceived and designed the review and wrote the paper: AMP; corrected and edited the manuscript: MHP; wrote and edited extensively the manuscript: APK.

Corresponding author

Correspondence to A. Peter Klimley.

Ethics declarations

Ethical statement

Not applicable.

Consent to participate

All the authors agree with the contents of the manuscript and give their consent to submit.

Consent for publication

This work is an original review carried out by the authors and all of us agree with its submission in the present form to the RFBF. The manuscript is not currently under consideration in another journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páez, A.M., Padilla, E.M.H. & Klimley, A.P. A review of tonic immobility as an adaptive behavior in sharks. Environ Biol Fish 106, 1455–1462 (2023). https://doi.org/10.1007/s10641-023-01413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-023-01413-1

Keywords

Navigation