Skip to main content
Log in

Landscape factors affect the genetic population structure of Oncorhynchus mykiss populations in Hood Canal, Washington

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Among salmonids, local adaptation can reduce gene flow among populations, which can then lead to population sub-division. As such, it is important to understand what landscape variables affect local adaptation, especially for populations for which conservation concerns exist. By examining allele frequencies at 15 microsatellite DNA loci from anadromous (steelhead) and freshwater resident (rainbow trout) Oncorhynchus mykiss collected from 7 Hood Canal, Washington rivers, we surveyed the genetic population structure within and among populations, and examined the landscape factors that could be affecting their genetic population structure. We found that samples from within a river system were more genetically similar to each other regardless of life history type or sampling location than they were to similar types from other rivers. Rainbow trout samples had lower genetic diversity then steelhead samples. We identified two main population groups among the steelhead samples. Genetic distance among populations was most strongly influenced by the populations’ locations on one of two peninsulas, and to a lesser extent, river flow rate and hydrological characteristics. These factors influence genetic population structure and local adaptation more than geographic distance, river gradient, or mean annual river temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman MW, Templin WD, Seeb JE, Seeb LW (2013) Landscape heterogeneity and local adaptation define the spatial genetic structure of pacific salmon in a pristine environment. Conserv Genet 14:483–498

    Article  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden, MA

    Google Scholar 

  • Allendorf FW, Phelps SR (1981) Use of allelic frequencies to describe population structure. Can J Fish Aquat Sci 38:1507–1514

    Article  Google Scholar 

  • Anderson MJ (2003) DISTLM forward. Distance-based multivariate analysis for a linear model using forward selection. Available at http://www.stat.auckland.ac.nz/~mja

  • Ardren WR, Borer S, Thrower F, Joyce JE, Kapuscinski AR (1999) Inheritance of 12 microsatellite loci in Oncorhynchus mykiss. J Hered 90:529–536

    Article  CAS  Google Scholar 

  • Arthaud DL, Greene CM, Guilbault K, Morrow JV Jr (2010) Contrasting life-cycle impacts of stream flow on two Chinook salmon populations. Hydrobiologia 655:171–188

    Article  Google Scholar 

  • Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830

    Article  Google Scholar 

  • Banks MA, Blouin MS, Baldwin BA, Rashbrook VK, Fitzgerald HA, Blankenship SM, Hedgecock D (1999) Isolation and inheritance of novel microsatellites in Chinook salmon (Oncorhynchus tschawytscha). J Hered 90:281–288

    Article  CAS  Google Scholar 

  • Beacham TD, Pollard S, Le KD (1999) Population structure and stock identification of steelhead trout in southern British Columbia, Washington, and the Columbia River based on microsatellite DNA variation. Trans Am Fish Soc 128:1068–1084

    Article  CAS  Google Scholar 

  • Beacham TD, Le KD, Candy JR (2004) Population structure and stock identification of steelhead trout (Oncorhynchus mykiss) in British Columbia and the Columbia River based on microsatellite variation. Environ Biol Fish 69:95–109

    Article  Google Scholar 

  • Beacham TD, Wallace CG, Le KD, Beere M (2012) Population structure and run timing of steelhead in the Skeena River, British Columbia. N Am J Fish Manag 32:262–275

    Article  Google Scholar 

  • Beechie T, Buhle E, Ruckelshaus M, Fullerton A, Holsinger L (2006) Hydrologic regime and the conservation of salmon life history diversity. Biol Cons 130:560–572

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Berejikian BA, Johnson T, Endicott RS, Lee-Waltermire J (2008) Increases in steelhead (Oncorhynchus mykiss) redd abundance resulting from two conservation hatchery strategies in the Hamma hamma river, Washington. Can J Fish Aquat Sci 65:754–764

    Article  Google Scholar 

  • Berejikian BA, Larsen DA, Swanson P, Moore ME, Tatara CP, Gale WL, Pasley CR, Beckman BR (2012) Development of natural growth regimes for hatchery-reared steelhead to reduce residualismg, fitness loss, and negative ecological interactions. Envir Biol Fish 94:29–44

    Article  Google Scholar 

  • Berejikian BA, Campbell LA, Moore ME (2013) Large-scale freshwater habitat features influence the degree of anadromy in eight Hood Canal Oncorhynchus mykiss populations. Can J Fish Aquat Sci 70:756–765

    Article  Google Scholar 

  • Berejikian BA, Campbell LA, Bush R (2014) Maternal control over offspring life history in a partially anadromous species (Oncorhynchus mykiss). Trans Am Fish Soc 143:369–379

  • Blankenship SM, Campbell MR, Hess JE, Hess MA, Kassler TW, Kozfkay CC, Matala AP, Narum SR, Paquin MM, Small MP, Stephenson JJ, Warheit KI (2011) Major lineages and metapopulations in Columbia River Oncorhynchus mykiss are structured by dynamic landscape features and environments. Trans Am Fish Soc 140:665–684

    Article  Google Scholar 

  • Buchholz W, Miller SJ, Spearman WJ (1999) Summary of PCR primers for salmonid genetic studies. U.S. Fish and Wildlife Service, Alaska Fisheries Progress Report 99–1. Available at: http://www.fws.gov/alaska/fisheries/genetics/pdf/01_rf_1999_BuchholzMillerSpearman_p_1999_1.pdf. Accessed 9 December 2013

  • Burger CV, Finn JE, Holland-Bartels L (1995) Pattern of shoreline spawning by sockeye salmon in a glacially turbid lake: evidence for subpopulation differentiation. Trans Am Fish Soc 124:1–15

    Article  Google Scholar 

  • Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol Ecol 9:2175–2178

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JH, Jung HY, Kim HS, Cho HG (2000) PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16:1056–1058

    Article  CAS  PubMed  Google Scholar 

  • Clemento AJ, Anderson EC, Boughton D, Girman D, Garza JC (2009) Population genetic structure and ancestry of Oncorhynchus mykiss populations above and below dams in south-central California. Conserv Genet 10:1321–1336

    Article  Google Scholar 

  • Condrey MJ, Bentzen P (1998) Characterization of coastal cutthroat trout (Oncorhynchus clarki clarki) microsatellites and their conservation in other salmonids. Mol Ecol 7:787–789

    CAS  PubMed  Google Scholar 

  • Courter II, Child DB, Hobbs JA, Garrison TM, Glessner JJG, Duery S (2013) Resident rainbow trout produce anadromous offspring in a large interior watershed. Can J Fish Aquat Sci 70:701–710

    Article  Google Scholar 

  • Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17:2382–2396

    Article  CAS  PubMed  Google Scholar 

  • Dittman AH, Quinn TP (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91

    PubMed  Google Scholar 

  • Dittman AH, May D, Larsen DA, Moser ML, Johnston M, Fast D (2010) Homing and spawning site selection by supplemented hatchery- and natural-origin Yakima river spring Chinook salmon. Trans Am Fish Soc 139:1014–1028

    Article  Google Scholar 

  • Drinan TJ, McGinnity P, Coughlan JP, Cross TF, Harrison SS (2012) Morphological variability of Atlantic salmon Salmo salar and brown trout Salmo trutta in different river environments. Ecol Freshw Fish 21:420–432

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faubet P, Gaggiotti OE (2008) A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 178:1491–1504

    Article  PubMed Central  PubMed  Google Scholar 

  • Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.65. Available at http://evolution.genetics.washington.edu/phylip.html

  • Frenkel RE (2003) Vegetation. In: Jacobson PL, Kimerling AJ (eds) Atlas of the Pacific Northwest. Oregon State University Press, Corvallis, OR

    Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol Ecol 9:615–628

    Article  CAS  PubMed  Google Scholar 

  • Gharrett AJ, Lane S, McGregor AJ, Taylor SG (2001) Use of a genetic marker to examine genetic interaction among subpopulations of pink salmon (Oncorhynchus gorbuscha). Genetica 111:259–267

    Article  CAS  PubMed  Google Scholar 

  • Good TP, Waples RS, Adams P (2005) Updated status of federally listed ESUs of West Coast salmon and steelhead. US Dept Commerce, NOAA Tech Memo NMFS-NWFSC-66

  • Google (2013) Google Earth, version 7.1.1.1888. Available at www.google.com/earth

  • Goudet J (2002) FSTAT, version 2.9.3.2. Available at: http://www2.unil.ch/popgen/softwares/fstat.htm

  • Griffith JN, Hendry AP, Quinn TP (1999) Straying of adult sockeye salmon, Oncorhynchus nerka, entering a non-natal hatchery. Fish Bull 97:713–716

    Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Hale MC, Thrower FP, Berntson EA, Miller MR, Nichols KM (2013) Evaluating adaptive divergence between migratory and nonmigratory ecotypes of a salmonid fish, Oncorhynchus mykiss. G3 3:1273–1285

  • Hard JJ, Myers JM, Ford MJ, Kope RG, Pess GR, Waples RS, Winans GA, Berejikian BA, Waknitz FW, Adams PB, Bisson PA, Campton DE, Reisenbichler RR (2007) Status review of Puget Sound steelhead (Oncorhynchus mykiss). US Dept Commerce, NOAA Tech Memo NMFS-NWFSC-81

  • Hayes SA, Hanson CV, Pearse DE, Bond MH, Garza JC, BacFarlane RB (2012) Should I stay or should I go? The influence of genetic origin on emigration behavior and physiology of resident and anadromous juvenile Oncorhynchus mykiss. N Am J Fish Manag 32:772–780

    Article  Google Scholar 

  • Heath DD, Bettles CM, Jamieson S, Stasiak I, Docker MF (2008) Genetic differentiation among sympatric migratory and resident life history forms of rainbow trout in British Columbia. Trans Am Fish Soc 137:1268–1277

    Article  CAS  Google Scholar 

  • Hendry AP, Wenburg JK, Bentzen P, Volk EC, Quinn TP (2000) Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290:516–518

    Article  CAS  PubMed  Google Scholar 

  • Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The evolution of philopatry and dispersal. Homing versus straying in salmonids. In: Hendry AP, Stearns SC (eds) Evolution illuminated: salmon and their relatives. Oxford University Press, New York, NY

    Google Scholar 

  • Holtby LB, Healey MC (1986) Selection for adult size in female coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 43:1946–1959

    Article  Google Scholar 

  • Hubisz M, Falush D, Stephens M, Pritchard J (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a clustering matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones O, Wang J (2009) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Katzman SM, Greathouse J, Roessig JM, Graham J, Cocherell DE, Cech JJ Jr (2010) Water velocity preferences of coho salmon during the parr-smolt transformation. Environ Biol Fish 88:79–84

    Article  Google Scholar 

  • Keefer ML, Caudill CC, Peery CA, Bjornn TC (2006) Route selection in a large river during the homing migration of Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 63:1752–1762

    Article  Google Scholar 

  • Keefer ML, Caudill CC, Peery CA, Boggs CT (2008) Non-direct homing behaviours by adult Chinook salmon in a large, multi-stock river system. J Fish Biol 72:27–44

    Article  Google Scholar 

  • Limborg MT, Blankenship SM, Young SF, Utter FM, Seeb LW, Hansen MHH, Seeb JE (2011) Signatures of natural selection among lineages and habitats in Oncorhynchus mykiss. Ecol Evol 2:1–18

    Article  Google Scholar 

  • Lin J, Quinn TP, Hilborn R, Hauser L (2008) Fine-scale differentiation between sockeye salmon ecotypes and the effect of phenotype on straying. Heredity 101:341–350

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Martins EG, Hinch SG, Patterson DA, Hague MJ, Cooke SJ, Miller KM, LaPointe MF, English KK, Farrell AP (2011) Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser river sockeye salmon (Oncorhynchus nerka). Glob Chang Biol 17:99–114

    Article  Google Scholar 

  • McConnell S, Hamilton L, Morris D, Cook D, Paquet D, Bentzen P, Wright J (1995) Isolation of salmonid microsatellite loci and their application to the population genetics of Canadian east coast stocks of Atlantic salmon. Aquaculture 137:19–30

    Article  Google Scholar 

  • Mesa MG, Magie CD (2006) Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia river basin: an assessment based on sequential proximate analysis. River Res Appl 22:1085–1095

    Article  Google Scholar 

  • Milner NJ, Solomon DJ, Smith GW (2012) The role of river flow in the migration of adult Atlantic salmon, Salmo salar, through estuaries and rivers. Fish Manag Ecol 19:537–547

    Article  Google Scholar 

  • Mogensen S, Hutchings JA (2012) Maternal fitness consequences of interactions among agents of mortality in early life of salmonids. Can J Fish Aquat Sci 69:1539–1555

    Article  Google Scholar 

  • Montgomery DR, Buffington JM, Peterson NP, Schuett-Hames D, Quinn TP (1996) Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility and embryo survival. Can J Fish Aquat Sci 53:1061–1070

    Article  Google Scholar 

  • Moore M, Berejikian BA, Tezak EP (2012) Variation in the early marine survival and behavior of natural and hatchery-reared Hood Canal steelhead. PLoS One 7:e49645. doi:10.1371/journal.pone.0049645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris DB, Richard KR, Wright JM (1996) Microsatellites from rainbow trout (Oncorhynchus mykiss) and their use for genetic study of salmonids. Can J Fish Aquat Sci 53:120–126

    Article  CAS  Google Scholar 

  • Mortensen DG, Wertheimer AC, Maselko JM, Taylor SG (2002) Survival and straying of Auke creek, Alaska, pink salmon marked with coded wire tags and thermally induced otolith marks. Trans Am Fish Soc 131:14–26

    Article  Google Scholar 

  • Moscrip AL, Montgomery DR (1997) Urbanization, flood frequency, and salmon abundance in Puget lowland streams. J Am Wat Res Assoc 33:1289–1297

    Article  CAS  Google Scholar 

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Narum SR, Zendt JS, Graves D, Sharp WR (2008) Influence of landscape on resident and anadromous life history types of Oncorhynchus mykiss. Can J Fish Aquat Sci 65:1013–1023

    Article  Google Scholar 

  • Narum SR, Campbell NR, Kozfkay CC, Meyer KA (2010) Adaptation of redband trout in desert and montane environments. Mol Ecol 19:4622–4637

    Article  PubMed  Google Scholar 

  • National Marine Fisheries Service (2007) Endangered and threatened species: final listing determination for Puget Sound steelhead. Fed Regist 72 (May 11, 2007):26722–26735

  • Nelson RJ, Beacham TD (1999) Isolation and cross-species amplification of microsatellite loci useful for study of Pacific salmon. Anim Genet 30:228–229

    Article  CAS  PubMed  Google Scholar 

  • Nichols KM, Edo AF, Wheeler PA, Thorgaard GH (2008) The genetic basis of smoltification-related traits in Oncorhynchus mykiss. Genetics 179:1559–1575

    Article  PubMed Central  PubMed  Google Scholar 

  • Nielsen JL, Pavey SA, Wiacek T, Williams I (2005) Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses. San Francisco Estuary & Watershed Science 3 (2):article 3. Available at http://escholarship.org/uc/item/6sc3905g

  • Nosil P, Vines TH, Funk DJ (2005) Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719

    PubMed  Google Scholar 

  • Olsen JB, Bentzen P, Seeb JE (1998) Characterization of seven microsatellite loci derived from pink salmon. Mol Ecol 7:1087–1089

    CAS  PubMed  Google Scholar 

  • Olsen JB, Wuttig K, Fleming D, Kretschmer EJ, Wenburg JK (2006) Evidence of partial anadromy and resident-form dispersal bias on a fine scale in populations of Oncorhynchus mykiss. Conserv Genet 7:613–619

    Article  Google Scholar 

  • Olsen JB, Flannery BG, Beacham TD, Bromaghin JF, Crane PA, Lean CF, Dunmall KM, Wenburg JK (2008) The influence of hydrographic structure and seasonal run timing on genetic diversity and isolation-by-distance in chum salmon (Oncorhynchus keta). Can J Fish Aquat Sci 65:2026–2042

    Article  CAS  Google Scholar 

  • Omernik JM (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geogr 77:118–125

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295

    Google Scholar 

  • Pearse DE, Bond SA, Bond MH, Hanson CV, Anderson EC, Macfarlane RB, Garza JC (2009) Over the falls? Rapid evolution of ecotypic differentiation in steelhead/rainbow trout (Oncorhynchus mykiss). J Hered 100:515–525

    Article  CAS  PubMed  Google Scholar 

  • Phelps SR, Leider SA, Hulett PL, Baker BM, Johnson T (1997) Genetic analyses of Washington steelhead: preliminary results incorporating 36 new collections from 1995 and 1996. Washington Department of Fish and Wildlife, Olympia

  • Puget Sound Steelhead Technical Recovery Team (2013) Identifying historical populations of steelhead within the Puget Sound distinct population segment. Draft, Final Review, Available at http://wdfw.wa.gov/publications/01508

    Google Scholar 

  • Quinn TP (2005) The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Satterthwaite WH, Beakes MP, Collins EM, Swank DR, Merz JE, Titus RG, Sogard SM, Mangel M (2010) State-dependent life history models in a changing (and regulated) environment: steelhead in the California Central Valley. Evol Appl 3:221–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Sauter ST, Connolly PJ (2010) Growth, condition factor, and bioenergetics modeling link warmer stream temperatures below a small dam to reduced performance of juvenile steelhead. Northwest Sci 84:369–377

    Article  Google Scholar 

  • Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel microsatellite loci: cross-species amplification and population genetic applications. Can J Fish Aquat Sci 53:685–693

    Article  Google Scholar 

  • Shoji T, Ueda H, Ohgami T, Sakamoto T, Katsuragi Y, Yamauchi K, Kurihara K (2000) Amino acids dissolved in stream water as possible home stream odorants for masu salmon. Chem Sens 25:533–540

    Article  CAS  Google Scholar 

  • Small MP, Johnson TH, Bowman C, Martinez E (2013) Genetic assessment of a summer chum salmon metapopulations in recovery. Evol App. doi:10.1111/eva.12118

    Google Scholar 

  • Smith CR, Koop BF, Nelson RJ (1998) Isolation and characterization of coho salmon (Oncorhynchus kisutch) microsatellites and their use in other salmonids. Mol Ecol 7:1614–1616

    CAS  PubMed  Google Scholar 

  • Spies IB, Brasier DJ, O’ Reilly PTL, Seamons TR, Bentzen P (2005) Development and characterization of novel tetra-, tri-, and dinucleotide microsatellite markers in rainbow trout (Oncorhynchus mykiss). Mol Ecol Notes 5:278–281

    Article  CAS  Google Scholar 

  • Steen RP, Quinn TP (1999) Egg burial depth by sockeye salmon (Oncorhynchus nerka): implications for survival of embryos and natural selection on female body size. Can J Zoo 77:836–841

    Article  Google Scholar 

  • Stephenson JJ, Campbell MR, Hess JE, Kozfkay C, Matala AP, McPhee MV, Moran P, Narum SR, Paquin MM, Schlei O, Small MP, Van Doornik DM, Wenburg JK (2009) A centralized model for creating shared, standardized, microsatellite data that simplifies inter-laboratory collaboration. Conserv Genet 10:1145–1149

    Article  CAS  Google Scholar 

  • Tallman RF, Healey MC (1994) Homing, straying, and gene flow among seasonally separated populations of chum salmon (Oncorhynchus keta). Can J Fish Aquat Sci 51:577–588

    Article  Google Scholar 

  • Thrower FP, Hard JJ, Joyce JE (2004) Genetic architecture of growth and early life-history transitions in anadromous and derived freshwater populations of steelhead. J Fish Biol 65:286–307

    Article  Google Scholar 

  • U.S. Geological Survey (2013) USGS water data for the nation. Available at waterdata.usgs.gov

  • Van Doornik DM, Teel DJ, Kuligowski DR, Morgan CA, Casillas E (2007) Genetic analyses provide insight into the early ocean stock distribution and survival of juvenile coho salmon off the coasts of Washington and Oregon. N Amer J Fish Manag 27:220–237

    Article  Google Scholar 

  • Van Doornik DM, Berejikian BA, Campbell LA, Volk EC (2010) The effect of a supplementation program on the genetic and life history characteristics of an Oncorhynchus mykiss population. Can J Fish Aquat Sci 67:1449–1458

    Article  Google Scholar 

  • Van Doornik DM, Berejikian BA, Campbell LA (2013) Gene flow between sympatric life history forms of Oncorhynchus mykiss located above and below migratory barriers. PLoS One 8:e79931. doi:10.1371/journal.pone.0079931

    Article  PubMed Central  PubMed  Google Scholar 

  • Washington Department of Ecology (2012) Flow monitoring network. Available at https://fortress.wa.gov/ecy/wrx/wrx/flows/regions/state.asp

  • Washington Department of Fish and Wildlife (2008) Statewide steelhead management plan: statewide policies, strategies, and actions. http://wdfw.wa.gov/publications/00149/wdfw00149.pdf. Accessed 25 September 2013

  • Washington Department of Fish and Wildlife (2013a) SalmonScape. Available at: www.wdfw.wa.gov/mapping/salmonscape

  • Washington Department of Fish and Wildlife (2013b) Spawning ground survey database. Available at http://wdfw.wa.gov/conservation/fisheries/sgs

  • Wellband KW, Atagi DY, Koehler RA, Heath DD (2012) Fine-scale population genetic structure and dispersal of juvenile steelhead in the Bulkley-Morice River, British Columbia. Trans Am Fish Soc 141:392–401

    Article  Google Scholar 

  • Westley PAH, Quinn TP, Dittman AH (2013) Rates of straying by hatchery-produced Pacific salmon (Oncorhynchus spp.) and steelhead (Oncorhynchus mykiss) differ among species, life history types, and populations. Can J Fish Aquat Sci 70:735–746

    Article  Google Scholar 

  • Yamamoto Y, Shibata H, Ueda H (2013) Olfactory homing of chum salmon to stable compositions of amino acids in natal stream water. Zoo Sci 30:607–612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the numerous personnel from the Hood Canal Salmon Enhancement Group, Long Live the Kings, NOAA Fisheries, the Skokomish Tribal Nation, and the Washington Department of Fish and Wildlife who assisted with data and sample collection, and the Robbins family for providing access to the Hamma Hamma River. Thanks also to Jeff Hard and David Teel who provided valuable reviews of earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Van Doornik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Doornik, D.M., Berejikian, B.A. Landscape factors affect the genetic population structure of Oncorhynchus mykiss populations in Hood Canal, Washington. Environ Biol Fish 98, 637–653 (2015). https://doi.org/10.1007/s10641-014-0301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-014-0301-4

Keywords

Navigation