Skip to main content

Advertisement

Log in

Bispecific anti-CD3×anti-CD155 antibody mediates T-cell immunotherapy in human haematologic malignancies

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

T cells are important components in the cell-mediated antitumour response. In recent years, bispecific antibodies (Bi-Abs) have become promising treatments because of their ability to recruit T cells that kill tumours. Here, we demonstrate that CD155 is expressed in a wide range of human haematologic tumours and report on the ability of the bispecific antibody anti-CD3 x anti-CD155 (CD155Bi-Ab) to activate T cells targeting malignant haematologic cells. The specific cytolytic effect of T cells armed with CD155Bi-Ab was evaluated by quantitative luciferase assay, and the results showed that the cytolytic effect of these cells was accompanied by an increase in the level of the cell-killing mediator perforin. Moreover, compared with their unarmed T-cell counterparts, CD155Bi-Ab-armed T cells induced significant cytotoxicity in CD155-positive haematologic tumour cells, as indicated by lactate dehydrogenase assays, and these results were accompanied by increased granzyme B secretion. Furthermore, CD155Bi-Ab-armed T cells produced more T-cell-derived cytokines, including TNF-α, IFN-γ, and IL-2. In conclusion, CD155Bi-Ab enhances the ability of T cells to kill haematologic tumour cells, and therefore, CD155 may serve as a novel target for immunotherapy against haematologic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Auberger P, Tamburini-Bonnefoy J, Puissant A (2020) Drug resistance in hematological malignancies. Int J Mol Sci 21(17):6091

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhansali RS, Pratz KW, Lai C (2023) Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol 16(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  3. Im A, Pavletic SZ (2017) Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol 10(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ivanov AV, Alecsa SM, Popescu R, Starcea MI, Mocanu AM, Rusu C, Miron IC (2023) Pediatric acute lymphoblastic leukemia emerging therapies-from pathway to target. Int J Mol Sci 24(5):4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Velasquez MP, Bonifant CL, Gottschal S (2018) Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 131(1):30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goebeler ME, Bargou RC (2020) T cell-engaging therapies-BiTEs and beyond. Nat Rev Clin Oncol. 17(7):418–434

    Article  PubMed  Google Scholar 

  7. Epperly R, Gottschalk S, Velasquez MP (2020) Harnessing T cells to target pediatric acute myeloid leukemia: CARs, BiTEs, and Beyond. Children (Basel) 7(2):14

    PubMed  Google Scholar 

  8. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W (2003) Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 94(8):655–667

    Article  CAS  PubMed  Google Scholar 

  9. Gao J, Zheng Q, Xin N, Wang W, Zhao C (2017) CD155, an onco-immunologic molecule in human tumors. Cancer Sci 108(10):1934–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Donnell JS, Madore J, Li XY, Smyth MJ (2020) Tumor intrinsic and extrinsic immune functions of CD155. Semin Cancer Biol 65(1):189–196

    Article  PubMed  Google Scholar 

  11. Wu B, Zhong C, Lang Q, Liang Z, Zhang Y, Zhao X, Yu Y, Zhang H, Xu F, Tian Y (2021) Poliovirus receptor (PVR)-like protein cosignaling network: new opportunities for cancer immunotherapy. J Exp Clin Cancer Res 40(1):267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Molfetta R, Zitti B, Lecce M, Milito ND, Stabile H, Cinzia F, Cippitelli M, Gismondi A, Santoni A, Paolini R (2020) CD155: a multi-functional molecule in tumor progression. Int J Mol Sci 21(3):922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Braun M, Aguilera AR, Sundarrajan A, Corvino D, Stannard K, Krumeich S, Das I, Lima LG, Meza Guzman LG, Li K, Li R, Salim N, Jorge MV, Ham S, Kelly G, Vari F, Lepletier A, Raghavendra A, Pearson S, Madore J, Jacquelin S, Effern M, Quine B, Koufariotis LT, Casey M, Nakamura K, Seo EY, Hölzel M, Geyer M, Kristiansen G, Taheri T, Ahern E, Hughes BGM, Wilmott JS, Long GV, Scolyer RA, Batstone MD, Landsberg J, Dietrich D, Pop OT, Flatz L, Dougall WC, Veillette A, Nicholson SE, Möller A, Johnston RJ, Martinet L, Smyth MJ, Bald T (2020) CD155 on tumor cells drives resistance to immunotherapy by inducing the degradation of the activating receptor CD226 in CD8+ T Cells. Immunity 53(4):805–823

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Yang Z, Du G, Cao L, Tan B (2021) CD155-prognositic and immunotherapeutic implications based on multiple analyses of databased across 33 human cancers. Technol Cancer Res Treat 20(1):1–12

    Google Scholar 

  15. Iguchi-Manaka A, Okumura G, Kojima H, Cho Y, Hirochika R, Bando H, Sato T, Yoshikawa H, Hara H, Shibuya A, Shibuya K (2016) Increased soluble CD155 in serum of cancer patients. PLoS ONE 11(4):e0152982

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H, Zheng H (2016) T-Cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res 22(12):3057–3066

    Article  CAS  PubMed  Google Scholar 

  17. Vulpis E, Stabile H, Soriani A, Fionda C, Petrucci MT, Mariggio E, Ricciardi MR, Cippitelli M, Gismondi A, Santoni A, Zingoni A (2018) Key role of the CD56lowCD16low Natural killer cell subset in the recognition and killing of multiple myeloma cells. Cancers 10(12):473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, Tarazona R (2012) Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 90(1):109–115

    Article  CAS  PubMed  Google Scholar 

  19. Stamm H, Klingler F, Grossjohann EM, Muschhammer J, Vettorazzi E, Heuser M, Mock U, Thol F, Vohwinkel G, Latuske E, Bokemeyer C, Kischel R, Santos CD, Stienen S, Friedrich M, Lutteropp M, Nagorsen D, Wellbrock J, Fiedler W (2018) Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option. Oncogene 37(39):5269–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaito Y, Hirano M, Futami M, Nojima M, Tamura H, Tojo A, Imai Y (2022) CD155 and CD112 as possible therapeutic targets of FLT3 inhibitors for acute myeloid leukemia. Oncol Lett 23(2):51

    Article  CAS  PubMed  Google Scholar 

  21. Ma W, Ma J, Lei T, Zhao M, Zhang M (2019) Targeting immunotherapy for bladder cancer by using anti-CD3 × CD155 bispecific antibody. J Cancer 10(21):5153–5161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao H, Ma J, Lei T, Ma W, Zhang M (2019) The bispecific anti-CD3 × anti-CD155 antibody mediates T cell immunotherapy for human prostate cancer. Invest New Drugs 37(5):810–817

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Yu Y, Ma L, Xue X, Gao Z, Ma J, Zhang M (2020) T cell cytotoxicity toward hematologic malignancy via B7–H3 targeting. Invest New Drugs 38(3):722–732

    Article  PubMed  Google Scholar 

  24. Sun X, Zhao J, Ma L, Sun X, Ge J, Yu Y, Ma J, Zhang M (2021) B7–H6 as an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. Invest New Drugs 39(1):24–33

    Article  CAS  PubMed  Google Scholar 

  25. Jiang VC, Hao D, Jain P, Li Y, Cai Q, Yao Y, Nie L, Liu Y, Jin J, Wang W, Lee HH, Che Y, Dai E, Han G, Wang R, Rai K, Futreal A, Flowers C, Wang L, Wang M (2022) TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma. Mol Cancer 21(1):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huehls AM, Coupet TA, Sentman C (2015) Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 93(3):290–296

    Article  CAS  PubMed  Google Scholar 

  27. Cassioli C, Baldari CT (2022) The expanding arsenal of cytotoxic T cells. Front Immunol 13:883010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian Z, Liu M, Zhang Y, Wang X (2021) Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol 14(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang M, Sharma V, Mendelsohn A, Wei Q, Li Ji YuB, Larrick JW, LUM LG (2022) Broad reactivity and enhanced potency of recombinant anti-EGFR × anti-CD3 bispecific antibody-armed activated T cells against solid tumour. Ann Med 54(1):1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubicka E, Lum LG, Huang M, Thakur A (2022) Bispecific antibody-targeted T-cell therapy for acute myeloid leukemia. Front Immunol 13:899468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X (2019) Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol 12(1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen C, Guo Q, Fu H, Yu J, Wang L, Sun Y, Zhang J, Duan Y (2021) Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast cancer progression and metastasis. Biomaterials 275:120988

    Article  CAS  PubMed  Google Scholar 

  33. Zhan M, Zhang Z, Zhao X, Zhang Y, Liu T, Lu L, Li XY (2022) CD155 in tumor progression and targeted therapy. Cancer Lett 545(10):215830

    Article  CAS  PubMed  Google Scholar 

  34. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foa R, Santoni A (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK cell susceptibility and is associated with a senescent phenotype. Blood 113(15):3503–3511

    Article  CAS  PubMed  Google Scholar 

  35. McKay ZP, Brown MC, Gromeier M (2021) Aryl hydrocarbon receptor signaling controls CD155 expression on macrophages and mediates tumor immunosuppression. J Immunol 206(6):1385–1394

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is funded by grants from the Key Project of Science and Technology Plan of Beijing Municipal Education Commission (Beijing Municipal Science and Technology Commission, No. KZ201910025033 and No. KZ202110025028).

Author information

Authors and Affiliations

Authors

Contributions

Ma L. and Liu H. conceived and designed the experiments. Ma L. and Sun X. prepared figure 1. Ma L. and Ma J. prepared figure 2-5. Ma L., Ma J. and Liu H. wrote the mainuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Honggang Liu.

Ethics declarations

Ethics approval

All procedures involved in studies involving human participants were performed in accordance with the ethics standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethics standards. This article does not describe any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all participants included in the study.

Conflict of interest

Li Ma, Juan Ma, Xin Sun and Honggang Liu declared that they have no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Ma, J., Sun, X. et al. Bispecific anti-CD3×anti-CD155 antibody mediates T-cell immunotherapy in human haematologic malignancies. Invest New Drugs 41, 522–531 (2023). https://doi.org/10.1007/s10637-023-01367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01367-2

Keywords

Navigation