Skip to main content

Advertisement

Log in

Short-term effects of vision trainer rehabilitation in patients affected by anisometropic amblyopia: electrofunctional evaluation

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to evaluate the short-term effects of the vision trainer rehabilitation technique on retinal and post-retinal function in young amblyopic patients outside the critical visual developmental period.

Methods

Twenty-one patients (mean age 12.2 ± 2.7 years, ranging from 9.1 to 18 years) affected by unilateral anisometropic amblyopia were studied, providing 21 amblyopic eyes (AE) and 21 sound eyes (SE). Thirty eyes from 15 age-similar normal subjects served as controls. All subjects underwent extensive ophthalmologic characterization to exclude any disease not related to amblyopia. All AE were subjected to rehabilitation sessions performed by the Retimax vision trainer (VT) program. The protocol consisted of 2 sessions per week, each lasting 10 min, for 10 consecutive weeks. Before and after the rehabilitation, electrophysiological [pattern electroretinogram (PERG) and visual evoked potential (VEP)] and psychophysical [best corrected visual acuity (BCVA) and microperimetry] data were collected from AE and SE.

Results

When comparing baseline data with those collected at the end of the study, PERG P50-N95 amplitude and BCVA values from AE had improved significantly by the end of the study (p < 0.05). Our electrophysiological findings also showed some abnormalities in SE when the data were compared to control eyes. We found a significant correlation (p < 0.05) between PERG amplitude and VEP implicit time in SE after visual rehabilitation.

Conclusions

Short-term visual rehabilitation performed by the VT program ameliorated the electrofunctional and psychophysical parameters of vision in children outside the critical developmental period, thus indicating that VT might be a potential adjuvant therapy of traditional patching treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    CAS  PubMed  Google Scholar 

  2. Von Noorden GK (1985) Amblyopia a multidisciplinary approach. Proctor lecture. Invest Ophthalmol Vis Sci 26:1704–1716

    Google Scholar 

  3. Miki A, Liu GT, Goldsmith ZG, Liu C-SJ, Haselgrove JC (2003) Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica 217:365–369

    Article  PubMed  Google Scholar 

  4. Samarawickrama C, Huynh SC, Mitchell P (2009) Retinal structure in amplyopia. Ophthalmology 116:2041

    Article  PubMed  Google Scholar 

  5. Al-Haddad CE, El Mollayess GM, Mahfoud ZR, Jaafar DF, Bashshur ZF (2013) Macular ultrastructural features in amblyopia using high-definition optical coherence tomography. Br J Ophthalmol 97:318–322

    Article  PubMed  Google Scholar 

  6. Dickmann A, Petroni S, Perrotta V et al (2012) Measurement of retinal nerve fiber layer thickness, macular thickness, and foveal volume in amblyopic eyes using spectral-domain optical coherence tomography. J AAPOS 16:86–88

    Article  PubMed  Google Scholar 

  7. Celesia GG, Bodis-Wollner I, Chatrian GE, Harding GFA, Sokol S, Spekreijse H (1993) Recommended standards for electroretinograms and visual evoked potentials: report of an IFCN committee. Electroencephalogr Clin Neurophysiol 87:421–436

    Article  CAS  PubMed  Google Scholar 

  8. Marmor MF (1989) An international standard for electroretinography. Doc Ophthalmol 73:299–302

    Article  CAS  PubMed  Google Scholar 

  9. Parisi V, Manni G, Spadaro M et al (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40:2520–2527

    CAS  PubMed  Google Scholar 

  10. Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211:953–955

    Article  Google Scholar 

  11. Maffei L, Fiorentini A (1982) Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 48:327–334

    Article  CAS  PubMed  Google Scholar 

  12. Morrone C, Fiorentini A, Bisti S, Porciatti V, Burr DC (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey. Vis Neurosci 11:873–884

    Article  CAS  PubMed  Google Scholar 

  13. Porciatti V, Schiavi C, Benedetti P, Baldi A, Campos EC (1998) Cytidine-5 minute-diphosphocholine improves visual acuity, contrast sensitivity and visually-evoked potentials of amblyopic subjects. Curr Eye Res 17:141–148

    Article  CAS  PubMed  Google Scholar 

  14. Campos EC, Prampolini ML, Gulli R (1984) Contrast sensitivity differences between strabismic and anisometropic amblyopia: objective correlate by means of visual evoked responses. Doc Ophthalmol 58:45–50

    Article  CAS  PubMed  Google Scholar 

  15. Sokol S (1983) Abnormal evoked potential latencies in amblyopia. Br J Ophthalmol 67:310–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Parisi V, Scarale ME, Balducci N, Fresina M, Campos EC (2010) Electrophysiological detection of delayed postretinal neural conduction in human amblyopia. Invest Ophthalmol Vis Sci 51:5041–5048

    Article  PubMed  Google Scholar 

  17. Tugcu B, Araz-Ersan B, Kilic M, Erdogan ET, Yigit U, Karamursel S (2013) The morpho-functional evaluation of retina in amblyopia. Curr Eye Res 38:802–809

    Article  PubMed  Google Scholar 

  18. Medghalchi AR, Dalili S (2011) A randomized trial of atropine vs patching for treatment of moderate amblyopia. Iran Red Crescent Med J 13:578–581

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Scheiman MM, Hertle RW, Kraker RT, Pediatric Eye Disease Investigator Group et al (2008) Patching vs atropine to treat amblyopia in children aged 7 to 12 years: a randomized trial. Arch Ophthalmol 126:1634–1642

    Article  PubMed  Google Scholar 

  20. Pediatric Eye Disease Investigator Group, Repka MX, Kraker RT, Becket RW et al (2008) A randomized trial of atropine vs. patching for treatment of moderate amblyopia: follow-up at age 10 years. Arch Ophthalmol 126:1039–1044

    Article  PubMed  Google Scholar 

  21. Pediatric Eye Disease Investigator Group Writing Committee, Rutstein RP, Quinn GE, Lazar EL et al (2010) Randomized trial comparing Bangerter filters and patching for the treatment of moderate amblyopia in children. Ophthalmology 117:998–1004

    Article  PubMed  Google Scholar 

  22. Lennerstrand G, Samuelsson B (1983) Amblyopia in 4-year-old children treated with grating stimulation and full-time occlusion; a comparative study. Br J Ophthalmol 67:181–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tytla ME, Labow-Daily LS (1981) Evaluation of the CAM treatment for amblyopia: a controlled study. Invest Ophthalmol Vis Sci 20:400–406

    CAS  PubMed  Google Scholar 

  24. Willshaw HE, Malmheden A, Clarke J, Williams A, Dean L (1980) Experience with the CAM vision stimulator: preliminary report. Br J Ophthalmol 64:339–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Campbell FW, Hess RF, Watson PG, Banks R (1978) Preliminary results of a physiologically based treatment of amblyopia. Br J Ophthalmol 62:748–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Eastgate RM, Griffiths GD, Waddingham PE et al (2006) Modified virtual reality technology for treatment of amblyopia. Eye (Lond) 20:370–374

    Article  CAS  Google Scholar 

  27. Cleary M, Moody AD, Buchanan A, Stewart H, Dutton GN (2009) Assessment of a computer-based treatment for older amblyopes: the Glasgow Pilot Study. Eye (Lond) 23:124–131

    Article  CAS  Google Scholar 

  28. Contestabile MT, Recupero SM, Palladino D et al (2002) A new method of biofeedback in the management of low vision. Eye (Lond) 16:472–480

    Article  CAS  Google Scholar 

  29. Giorgi D, Contestabile MT, Pacella E, Gabrieli CB (2005) An instrument for biofeedback applied to vision. Appl Psychophysiol Biofeedback 30:389–395

    Article  PubMed  Google Scholar 

  30. Flom MC, Kirschen DG, Bedell HE (1980) Control of unsteady, eccentric fixation in amblyopic eyes by auditory feedback of eye position. Invest Ophthalmol Vis Sci 19:1371–1381

    CAS  PubMed  Google Scholar 

  31. Astle AT, Webb BS, McGraw PV (2011) The pattern of learned visual improvements in adult amblyopia. Invest Ophthalmol Vis Sci 52:7195–7204

    Article  PubMed Central  PubMed  Google Scholar 

  32. Levi DM (2005) Perceptual learning in adults with amblyopia: a reevaluation of critical periods in human vision. Dev Psychobiol 46:222–232

    Article  PubMed  Google Scholar 

  33. Polat U, Ma-Naim T, Spierer A (2009) Treatment of children with amblyopia by perceptual learning. Vis Res 49:2599–2603

    Article  PubMed  Google Scholar 

  34. Scheiman MM, Hertle RW, Beck RW, Edwards AR et al (2005) Randomized trial of treatment of amblyopia in children aged 7 to 17 years. Arch Ophthalmol 123:437–447

    Article  PubMed  Google Scholar 

  35. Lewis TL, Maurer D (2005) Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev Psychobiol 46:163–183

    Article  PubMed  Google Scholar 

  36. Yalcin E, Balci O (2014) Efficacy of perceptual vision therapy in enhancing visual acuity and contrast sensitivity function in adult hypermetropic anisometropic amblyopia. Clin Ophthalmol 8:49–53

    PubMed Central  PubMed  Google Scholar 

  37. Nazemi F, Markowitz SN, Kraft S (2008) Treatment of anisometropic amblyopia in older children using macular stimulation with telescopic magnification. Can J Ophthalmol 43:100–104

    Article  PubMed  Google Scholar 

  38. Parisi V, Manni G, Spadaro M et al (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40:2520–2527

    CAS  PubMed  Google Scholar 

  39. Parisi V, Gallinaro G, Ziccardi L, Coppola G (2008) Electrophysiological assessment of visual function in patients with non-arteritic ischaemic optic neuropathy. Eur J Neurol 15:839–845

    Article  CAS  PubMed  Google Scholar 

  40. Ziccardi L, Sadun F, De Negri AM et al (2013) Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 54:6893–6901

    Article  PubMed  Google Scholar 

  41. Fiorentini A, Maffei L, Pirchio M, Spinelli D, Porciatti V (1981) The ERG in response to alternating gratings in patients with diseases of the peripheral visual pathway. Invest Ophthalmol Vis Sci 21:490–493

    CAS  PubMed  Google Scholar 

  42. Hawlina M, Konec B (1992) New non-corneal HK-loop electrode for clinical electroretinography. Doc Ophthalmol 81:253–259

    Article  CAS  PubMed  Google Scholar 

  43. Porciatti V, Falsini B (1993) Inner retina contribution to the flicker electroretinogram: a comparison with the pattern electroretinogram. Clin Vis Sci 8:435–447

    Google Scholar 

  44. Jasper HH (1958) The ten-twenty electrode system of the international federation of electroencephalography. Electroncephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  45. Fujii GY, de Juan E, Sunness J Jr, Humayun MS, Pieramici DJ, Chang TS (2002) Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. Ophthalmology 109:1737–1744

    Article  PubMed  Google Scholar 

  46. Sokol S, Nadler D (1979) Simultaneous electroretinograms and visually evoked potentials from adult amblyopes in response to a pattern stimulus. Invest Ophthalmol Vis Sci 18:848–855

    CAS  PubMed  Google Scholar 

  47. Arden GB, Wooding SL (1985) Pattern ERG in amblyopia. Invest Ophthalmol Vis Sci 26:88–96

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Magli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito Veneruso, P., Ziccardi, L., Magli, G. et al. Short-term effects of vision trainer rehabilitation in patients affected by anisometropic amblyopia: electrofunctional evaluation. Doc Ophthalmol 129, 177–189 (2014). https://doi.org/10.1007/s10633-014-9462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-014-9462-x

Keywords

Navigation