Skip to main content
Log in

Asymmetric entanglement-assisted quantum codes: bound and constructions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The theory of quantum error-correcting codes has been extended to asymmetric quantum channels-qubit-flip and phase-shift errors may have equal or different probabilities. Previous work in constructing quantum error-correcting codes has focused on code constructions for symmetric quantum channels. Recently, Galindo et al. introduced the concept of asymmetric entanglement-assisted quantum error-correcting (AEAQEC) code, and gave a Gilbert–Varshamov bound for AEAQEC codes. Then they present the explicit computation of the parameters of AEAQEC codes coming from BCH codes. In this paper, we first establish a bound for pure AEAQEC codes similar to the quantum Singleton bound, and introduce the definition of pure AEAQEC MDS codes. Then we construct three new families of AQEAEC codes by means of Vandermonde matrices, extended GRS codes and cyclic codes. The AEQAEC codes here have better parameters than the ones available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly S.A.: Asymmetric quantum BCH codes. Proc. IEEE Int. Conf. Comput. Eng. Syst. 157–162 (2008).

  2. Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).

    Article  MathSciNet  Google Scholar 

  3. Bowen G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002).

    Article  Google Scholar 

  4. Brun T., Devetak I., Hsieh M.-H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006).

    Article  MathSciNet  Google Scholar 

  5. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).

    Article  MathSciNet  Google Scholar 

  6. Fan J., Chen H., Xu J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minmum distanc greater than \(q+1\). Quantum Inf. Comput. 16, 423–434 (2016).

    MathSciNet  Google Scholar 

  7. Galindo C., Hernando F., Matsumoto R., Ruano D.: Asymmetric entanglement-assisted quantum error-correcting codes and BCH codes. IEEE Access 8, 18571–18579 (2019).

    Article  Google Scholar 

  8. Guenda K., Gulliver T.A., Jitman S., Thipworawimon S.: Linear \(l\)-intersection pairs of codes and their applications. arXiv:1810.05103v.

  9. Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).

    Article  MathSciNet  Google Scholar 

  10. Hu P., Liu X.: A new method for constructing EAQEC MDS codes. arXiv:2003.00843.

  11. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  12. Hurley T., Hurley D., Hurley B.: Entanglement-assisted quantum error-correcting codes from units. arXiv:1806.10875v1.

  13. Ioffe L., Mézart M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75(3), 032345 (2007).

    Article  MathSciNet  Google Scholar 

  14. Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63, 2843–2847 (2017).

    MathSciNet  MATH  Google Scholar 

  15. Koroglu M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 44 (2019).

    Article  MathSciNet  Google Scholar 

  16. Lai C.Y., Brun T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013).

    Article  Google Scholar 

  17. Leng R., Ma Z.: Constructions of new families of nonbinary asymmetric quantum BCH codes and subsystem BCH codes. Sci. China 55(3), 465–469 (2012).

    Article  MathSciNet  Google Scholar 

  18. Li L., Zhu S., Liu L., Kai X.: Entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18, 153 (2019).

    Article  MathSciNet  Google Scholar 

  19. Liu X., Yu L., Hu P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019).

    Article  MathSciNet  Google Scholar 

  20. Liu X., Liu H., Yu L.: New EAQEC codes constructed from Galois LCD codes. Quantum Inf. Process. 19, 20 (2020).

    Article  MathSciNet  Google Scholar 

  21. Lu L., Li R., Guo L., Ma Y., Liu Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. 17, 69 (2018).

    Article  MathSciNet  Google Scholar 

  22. Luo G., Cao X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process 18, 89 (2019).

    Article  MathSciNet  Google Scholar 

  23. Luo G., Cao X., Chen X.: MDS codes with arbitrary dimensional hull and their applications. IEEE Trans. Inf. Theory 68(8), 2944–2952 (2019).

    Article  Google Scholar 

  24. Matsumoto R.: Improved Gilbert-Varshamov bound for entanglemen-assisted asymmetric quantum error correction by symplectic orthogonality. IEEE Trans. Quantum Eng. 1, 4100604 (2020).

    Article  Google Scholar 

  25. Sarvepalli P.K., Rotte L.M., Klappennecker A.: Asymmetric quantum LDPC codes. arXiv:quant-ph/08044316.

  26. Sarvepalli P.K., Klappenecker A., Rotteler M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. R. Soc. A 465, 1645–1672 (2009).

    Article  MathSciNet  Google Scholar 

  27. Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995).

    Article  Google Scholar 

  28. Steane A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2557 (1996).

    Article  MathSciNet  Google Scholar 

  29. Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996).

    Article  MathSciNet  Google Scholar 

  30. Wang L., Feng K.Q., Ling S., et al.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inform. Theory 56(6), 2938–2945 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiusheng Liu.

Additional information

Communicated by J.-L. Kim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Hu, P. & Liu, X. Asymmetric entanglement-assisted quantum codes: bound and constructions. Des. Codes Cryptogr. 89, 797–809 (2021). https://doi.org/10.1007/s10623-021-00845-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00845-z

Keywords

Mathematics Subject Classification

Navigation