Skip to main content
Log in

Effectiveness of Exercise Interventions on Body Composition, Exercise Capacity, Fatigue, and Quality of Life in Patients with Liver Cirrhosis: A Meta-Analysis of Randomized Controlled Trials

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Diminished muscle protein synthesis in cirrhosis leads to reduced strength and mass, impacting daily activities and overall quality of life.

Aims

This study aimed to examine the effectiveness of exercise intervention in body composition, exercise capacity, fatigue, and quality of life in patients with liver cirrhosis.

Methods

A systematic search of medical databases, including PubMed, Embase, Cochrane, and CINAHL, was executed from their inception to November 2022. The inclusion criteria were randomized controlled trials comparing exercise interventions with a control group that did not receive exercise interventions.

Results

From the initially identified 2,565 articles, eight studies with a total of 220 patients were eligible for inclusion in this meta-analysis. According to the meta-analysis, exercise significantly improved the six-minute walk distance (6MWD) by 68.93 m (95% CI 14.29–123.57) compared to the control group. Furthermore, the subgroup analysis revealed that combing exercise with amino acid supplementation had a greater positive effect on the 6MWD (MD = 144.72, 95% CI 87.44–202.01). Exercise also significantly increased thigh circumference (MD = 1.26, 95% CI 0.12–2.39) and the thigh ultrasound average compression index (MD = 0.07, 95% CI 0.00–0.14). Moreover, exercise significantly decreased fatigue levels by 0.7 points in patients with liver cirrhosis (95% CI 0.38–1.03). However, no significant effects were observed on body mass index (BMI), fat mass, fat-free mass, and quality of life.

Conclusions

Exercise can improve exercise capacity, thigh muscle thickness, and fatigue in patients with cirrhosis, but it does not have a significant impact on fat mass, BMI, or quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177–197.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10):166–73, 73.e1.

  3. Jones JC, Coombes JS, Macdonald GA. Exercise capacity and muscle strength in patients with cirrhosis. Liver Transpl. 2012;18:146–151.

    Article  PubMed  Google Scholar 

  4. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232–1244.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Orr JG, Homer T, Ternent L, Newton J, McNeil CJ, Hudson M et al. Health related quality of life in people with advanced chronic liver disease. J Hepatol. 2014;61:1158–1165.

    Article  PubMed  Google Scholar 

  6. Loria A, Escheik C, Gerber NL, Younossi ZM. Quality of life in cirrhosis. Curr Gastroenterol Rep. 2013;15:301.

    Article  PubMed  Google Scholar 

  7. Younossi ZM, Boparai N, Price LL, Kiwi ML, McCormick M, Guyatt G. Health-related quality of life in chronic liver disease: the impact of type and severity of disease. Am J Gastroenterol. 2001;96:2199–2205.

    Article  CAS  PubMed  Google Scholar 

  8. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70:172–193.

    Article  Google Scholar 

  9. Charlton MR. Protein metabolism and liver disease. Baillieres Clin Endocrinol Metab. 1996;10:617–635.

    Article  CAS  PubMed  Google Scholar 

  10. Ebadi M, Bhanji RA, Mazurak VC, Montano-Loza AJ. Sarcopenia in cirrhosis: from pathogenesis to interventions. J Gastroenterol. 2019;54:845–859.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schrager MA, Metter EJ, Simonsick E, Ble A, Bandinelli S, Lauretani F et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 1985;2007(102):919–925.

    Google Scholar 

  12. Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: A systematic review and meta-analysis. PLoS One. 2017;12:e0186990.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tandon P, Ismond KP, Riess K, Duarte-Rojo A, Al-Judaibi B, Dunn MA et al. Exercise in cirrhosis: Translating evidence and experience to practice. J Hepatol. 2018;69:1164–1177.

    Article  PubMed  Google Scholar 

  14. Meza-Junco J, Montano-Loza AJ, Baracos VE, Prado CM, Bain VG, Beaumont C et al. Sarcopenia as a prognostic index of nutritional status in concurrent cirrhosis and hepatocellular carcinoma. J Clin Gastroenterol. 2013;47:861–870.

    Article  PubMed  Google Scholar 

  15. Figueiredo FA, De Mello Perez R, Kondo M. Effect of liver cirrhosis on body composition: evidence of significant depletion even in mild disease. J Gastroenterol Hepatol. 2005;20:209–216.

    Article  PubMed  Google Scholar 

  16. D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol. 2006;44:217–231.

    Article  PubMed  Google Scholar 

  17. Gabr RM, El Salmawy DA, Basheer MA, Khairy M, Elkholy SH. Relation between the severity of liver cirrhosis and neurological symptoms, nerve conduction study results, and motor unit number estimation. J Viral Hepat. 2021;28:1312–1318.

    Article  PubMed  Google Scholar 

  18. Runyon BA. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49:2087–2107.

    Article  PubMed  Google Scholar 

  19. Swain MG. Fatigue in chronic disease. Clin Sci (Lond). 2000;99:1–8.

    Article  CAS  PubMed  Google Scholar 

  20. Swain MG, Jones DEJ. Fatigue in chronic liver disease: New insights and therapeutic approaches. Liver Int. 2019;39:6–19.

    Article  PubMed  Google Scholar 

  21. Cantor F. Central and peripheral fatigue: exemplified by multiple sclerosis and myasthenia gravis. Pm r. 2010;2:399–405.

    Article  PubMed  Google Scholar 

  22. Bhandari K, Kapoor D. Fatigue in Cirrhosis. Journal of clinical and experimental hepatology. 2022;12:617–624.

    Article  CAS  PubMed  Google Scholar 

  23. Diniz TA, de Lima Junior EA, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC et al. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci. 2021;266:118868.

    Article  CAS  PubMed  Google Scholar 

  24. Orci LA, Gariani K, Oldani G, Delaune V, Morel P, Toso C. Exercise-based Interventions for Nonalcoholic Fatty Liver Disease: A Meta-analysis and Meta-regression. Clin Gastroenterol Hepatol. 2016;14:1398–1411.

    Article  PubMed  Google Scholar 

  25. Smart NA, King N, McFarlane JR, Graham PL, Dieberg G. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. Br J Sports Med. 2018;52:834–843.

    Article  CAS  PubMed  Google Scholar 

  26. Frith J, Day CP, Robinson L, Elliott C, Jones DE, Newton JL. Potential strategies to improve uptake of exercise interventions in non-alcoholic fatty liver disease. J Hepatol. 2010;52:112–116.

    Article  PubMed  Google Scholar 

  27. Aamann L, Dam G, Rinnov AR, Vilstrup H, Gluud LL. Physical exercise for people with cirrhosis. Cochrane Database Syst Rev. 2018;12:Cd012678.

  28. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315:629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zenith L, Meena N, Ramadi A, Yavari M, Harvey A, Carbonneau M et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12:1920–6.e2.

    Article  PubMed  Google Scholar 

  31. Kruger C, McNeely ML, Bailey RJ, Yavari M, Abraldes JG, Carbonneau M et al. Home Exercise Training Improves Exercise Capacity in Cirrhosis Patients: Role of Exercise Adherence. Sci Rep. 2018;8:99.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Román E, García-Galcerán C, Torrades T, Herrera S, Marín A, Doñate M et al. Effects of an Exercise Programme on Functional Capacity, Body Composition and Risk of Falls in Patients with Cirrhosis: A Randomized Clinical Trial. PLoS One. 2016;11:e0151652.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen HW, Ferrando A, White MG, Dennis RA, Xie J, Pauly M et al. Home-Based Physical Activity and Diet Intervention to Improve Physical Function in Advanced Liver Disease: A Randomized Pilot Trial. Dig Dis Sci. 2020;65:3350–3359.

    Article  CAS  PubMed  Google Scholar 

  34. Román E, Torrades MT, Nadal MJ, Cárdenas G, Nieto JC, Vidal S et al. Randomized pilot study: effects of an exercise programme and leucine supplementation in patients with cirrhosis. Dig Dis Sci. 2014;59:1966–1975.

    Article  PubMed  Google Scholar 

  35. Sirisunhirun P, Bandidniyamanon W, Jrerattakon Y, Muangsomboon K, Pramyothin P, Nimanong S et al. Effect of a 12-week home-based exercise training program on aerobic capacity, muscle mass, liver and spleen stiffness, and quality of life in cirrhotic patients: a randomized controlled clinical trial. BMC Gastroenterol. 2022;22:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aamann L, Dam G, Borre M, Drljevic-Nielsen A, Overgaard K, Andersen H et al. Resistance Training Increases Muscle Strength and Muscle Size in Patients With Liver Cirrhosis. Clin Gastroenterol Hepatol. 2020;18:1179–87.e6.

    Article  PubMed  Google Scholar 

  37. Macías-Rodríguez RU, Ilarraza-Lomelí H, Ruiz-Margáin A, Ponce-de-León-Rosales S, Vargas-Vorácková F, García-Flores O et al. Changes in Hepatic Venous Pressure Gradient Induced by Physical Exercise in Cirrhosis: Results of a Pilot Randomized Open Clinical Trial. Clin Transl Gastroenterol. 2016;7:e180.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124:1792–801.

  39. Yoshida T, Muto Y, Moriwaki H, Yamato M. Effect of long-term oral supplementation with branched-chain amino acid granules on the prognosis of liver cirrhosis. Gastroenterol Jpn. 1989;24:692–698.

    Article  CAS  PubMed  Google Scholar 

  40. Dam G, Ott P, Aagaard NK, Vilstrup H. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis. Metab Brain Dis. 2013;28:217–220.

    Article  CAS  PubMed  Google Scholar 

  41. Heymsfield SB, Casper K. Anthropometric assessment of the adult hospitalized patient. JPEN J Parenter Enteral Nutr. 1987;11:36s–41s.

    Article  CAS  PubMed  Google Scholar 

  42. Singh Tejavath A, Mathur A, Nathiya D, Singh P, Raj P, Suman S et al. Impact of Branched Chain Amino Acid on Muscle Mass, Muscle Strength, Physical Performance, Combined Survival, and Maintenance of Liver Function Changes in Laboratory and Prognostic Markers on Sarcopenic Patients With Liver Cirrhosis (BCAAS Study): A Randomized Clinical Trial. Front Nutr. 2021;8:715795.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hernández-Conde M, Llop E, Gómez-Pimpollo L, Fernández Carrillo C, Rodríguez L, Van Den Brule E et al. Adding Branched-Chain Amino Acids to an Enhanced Standard-of-Care Treatment Improves Muscle Mass of Cirrhotic Patients With Sarcopenia: A Placebo-Controlled Trial. Am J Gastroenterol. 2021;116:2241–2249.

    Article  PubMed  Google Scholar 

  44. Mohta S, Anand A, Sharma S, Qamar S, Agarwal S, Gunjan D et al. Randomised clinical trial: effect of adding branched chain amino acids to exercise and standard-of-care on muscle mass in cirrhotic patients with sarcopenia. Hepatol Int. 2022;16:680–690.

    Article  PubMed  Google Scholar 

  45. Shiraki M, Nishiguchi S, Saito M, Fukuzawa Y, Mizuta T, Kaibori M et al. Nutritional status and quality of life in current patients with liver cirrhosis as assessed in 2007–2011. Hepatol Res. 2013;43:106–112.

    Article  PubMed  Google Scholar 

  46. Dias Teixeira MC, de Fátima Gomes de Sá Ribeiro M, Strauss E. A new insight into the differences among non-cirrhotic and cirrhotic patients using the liver disease quality of life instrument (LDQOL). Ann Hepatol. 2005;4:264–71.

  47. Marchesini G, Bianchi G, Amodio P, Salerno F, Merli M, Panella C, et al. Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology. 2001;120:170–8.

  48. Iwasa M, Matsumura K, Kaito M, Ikoma J, Kobayashi Y, Nakagawa N et al. Decrease of regional cerebral blood flow in liver cirrhosis. Eur J Gastroenterol Hepatol. 2000;12:1001–1006.

    Article  CAS  PubMed  Google Scholar 

  49. Ahl B, Weissenborn K, van den Hoff J, Fischer-Wasels D, Köstler H, Hecker H et al. Regional differences in cerebral blood flow and cerebral ammonia metabolism in patients with cirrhosis. Hepatology. 2004;40:73–79.

    Article  CAS  PubMed  Google Scholar 

  50. Biswal B, Kunwar P, Natelson BH. Cerebral blood flow is reduced in chronic fatigue syndrome as assessed by arterial spin labeling. J Neurol Sci. 2011;301:9–11.

    Article  PubMed  Google Scholar 

  51. Seifert T, Secher NH. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol. 2011;95:406–426.

    Article  CAS  PubMed  Google Scholar 

  52. Secher NH, Seifert T, Van Lieshout JJ. Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol 1985;2008(104):306–314.

    Google Scholar 

  53. Harber VJ, Sutton JR. Endorphins and exercise. Sports Med. 1984;1:154–171.

    Article  CAS  PubMed  Google Scholar 

  54. Khan S, Evans AA, Hughes S, Smith ME. Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic mice. Muscle Nerve. 2005;31:481–486.

    Article  CAS  PubMed  Google Scholar 

  55. Jason L, Brown M, Evans M, Anderson V, Lerch A, Brown A et al. Measuring substantial reductions in functioning in patients with chronic fatigue syndrome. Disabil Rehabil. 2011;33:589–598.

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no external funding from public, commercial, or non-profit organizations.

Author information

Authors and Affiliations

Authors

Contributions

Huei-Chi Hsieh: Writing—Original Draft, Formal analysis, Methodology, Data Curation. Wen-Pei Chang: Methodology, Writing—Review & Editing. Po-Jui Huang: Writing—Review & Editing. Chia-Hui Wang: Writing—Review & Editing. Yu-Huei Lin: Conceptualization, Formal analysis, Methodology, Data Curation, Writing—Review & Editing, Project administration.

Corresponding author

Correspondence to Yu-Huei Lin.

Ethics declarations

Competing interest

The authors declare that there is no conflict of interests in this study.

Institutional review board statement

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, HC., Chang, WP., Huang, PJ. et al. Effectiveness of Exercise Interventions on Body Composition, Exercise Capacity, Fatigue, and Quality of Life in Patients with Liver Cirrhosis: A Meta-Analysis of Randomized Controlled Trials. Dig Dis Sci (2024). https://doi.org/10.1007/s10620-024-08447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10620-024-08447-0

Keywords

Navigation