Skip to main content
Log in

Auricular Vagus Nerve Stimulation Ameliorates Functional Dyspepsia with Depressive-Like Behavior and Inhibits the Hypothalamus–Pituitary–Adrenal Axis in a Rat Model

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The hypothalamus–pituitary–adrenal axis is the most important endocrine system to control irritability response. Functional dyspepsia (FD) is closely related to irritability. This study aimed to preliminarily explore the corticotropin-releasing factor (CRF) mechanism of auricular vagus nerve stimulation (aVNS) for FD model rats.

Methods

Sprague–Dawley adult male rats were randomly divided into normal group, model group, aVNS group, and sham-aVNS group. Except for the normal rats, all other rats were induced into the FD model through tail-clamping stimulation for 3 weeks. Once the rat model was developed successfully, rats in the aVNS group and sham-aVNS group were intervened with aVNS or sham-aVNS for 2 weeks. No intervention was given to rats in the normal and model groups. The effect of aVNS was assessed. The expressions of hippocampal corticotropin-releasing hormone receptor 1 (CRHR1), hypothalamus CRF, adrenocorticotropic hormone (ACTH), and corticosterone in serum were assessed.

Results

1. Compared with normal rats, model-developing rats showed FD-like behavior. 2. Compared with model rats, rats in the aVNS group showed an improved general condition score and gastric motility, and increased horizontal and vertical motion scores. 3. The release of corticosterone, ACTH in serum, and CRF in the hypothalamus all increased in model rats but decreased with aVNS instead of sham-aVNS. 4. The expression of hippocampus CRHR1 was lower in model rats but higher in the aVNS group.

Conclusion

aVNS ameliorates gastric motility and improves the mental state in the FD-like rat, probably via inhibiting the CRF pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aziz I, Palsson OS, Törnblom H, Sperber AD, Whitehead WE, Simrén M. Epidemiology, clinical characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults in the USA, Canada, and the UK: A cross-sectional population-based study. Lancet Gastroenterol Hepatol 2018;3:252–262.

    PubMed  Google Scholar 

  2. Manan C, Park HJ, Piyaniran W et al. Validation of Rome II criteria for functional gastrointestinal disorders by factor analysis of symptoms in Asian patient sample. J Gastroenterol Hepatol 2003;18:796–802.

    PubMed  Google Scholar 

  3. Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ. Functional dyspepsia. Lancet 2020;396:1689–1702.

    CAS  PubMed  Google Scholar 

  4. Van Den Houte K, Carbone F, Tack J. Postprandial distress syndrome: Stratification and management. Expert Rev Gastroenterol Hepatol 2019;13:37–46.

    Google Scholar 

  5. Stanghellini V, Chan FK, Hasler WL et al. Gastroduodenal disorders. Gastroenterology 2016;150:1380–1392.

    PubMed  Google Scholar 

  6. Lin S, Gao T, Sun C, Jia M, Liu C, Ma A. The association between functional dyspepsia and depression: a meta-analysis of observational studies. Eur J Gastroenterol Hepatol 2019;31:911–918.

    PubMed  Google Scholar 

  7. He W, Jing XH, Zhu B et al. The auriculo-vagal afferent pathway and its role in seizure suppression in rats. BMC Neurosci. 2013;14:85.

    PubMed  PubMed Central  Google Scholar 

  8. Wu D, Rong PJ, Wang HC et al. Clinical effect of electroacupuncture on functional dyspepsia. World J Tradit Chin Med 2020;15:627–631 ((in Chinese)).

    Google Scholar 

  9. Frøkjaer JB, Bergmann S, Brock C et al. Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol Motil. 2016;28:592–598.

    PubMed  Google Scholar 

  10. Zhu Y, Xu F, Lu D et al. Transcutaneous auricular vagal nerve stimulation improves functional dyspepsia by enhancing vagal efferent activity. Am J Physiol Gastrointest Liver Physiol. 2021;20:G700–G711.

    Google Scholar 

  11. Guo HJ, Lin J, Li GC et al. The animal model study of functional dyspepsia. Chin J Integr Tradit Western Med Dig 2001;9:141–142 ((in Chinese)).

    Google Scholar 

  12. Yu WJ, Chen SN, Li SX, Wu YH. Influence of weitongxiaopi decoction on serum and gastric CCK and VIP in functional dyspepsia rats. Pract Pharm Clin Remedies. 2012;15:461–463 ((in Chinese)).

    Google Scholar 

  13. Wu Z, Lu X, Zhang S, Zhu C. Sini-San regulates the NO-cGMP-PKG pathway in the spinal dorsal horn in a modified rat model of functional dyspepsia. Evid-Based Complement Altern Med 2020. https://doi.org/10.1155/2020/3575231.

    Article  Google Scholar 

  14. Pan XL. Study of electroacupuncture therapy on expression of ghrelin and nt in peripheral and central of functional dyspepsia rats. Masters’ Thesis. Hubei University of Chinese Medicine, 2017 (in Chinese).

  15. Dong H, Qin YQ, Sun YC et al. Electroacupuncture ameliorates depressive-like behaviors in poststroke rats via activating the tPA/BDNF/TrkB pathway. Neuropsychiatr Dis Treat 2021;17:1057–1067.

    PubMed  PubMed Central  Google Scholar 

  16. Zhou J, Li S, Wang Y et al. Effects and mechanisms of auricular electroacupuncture on gastric hypersensitivity in a rodent model of functional dyspepsia. PLoS ONE 2017;12:e0174568.

    PubMed  PubMed Central  Google Scholar 

  17. Glynn LM, Davis EP, Sandman CA. New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides 2013;47:363–370.

    CAS  PubMed  Google Scholar 

  18. Wang M, Dong W, Wang R et al. Gastrodiae Rhizoma water extract ameliorates hypothalamic-pituitary-adrenal axis hyperactivity and inflammation induced by chronic unpredictable mild stress in rats. Biomed Res Int 2020;2020:8374614.

    PubMed  PubMed Central  Google Scholar 

  19. Pariante CM, Lightman SL. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci 2008;31:464–468.

    CAS  PubMed  Google Scholar 

  20. Meng P, Zhu Q, Zhao HQ et al. Effects of ganmaidazao decoction on HPA axis and hippocampal microstructure in chronic stress and depression rats. J Hunan Univ Chin Med 2017;37:581–585 ((in Chinese)).

    Google Scholar 

  21. Li S, Wang Y, Gao G et al. Transcutaneous auricular vagus nerve stimulation at 20 Hz improves depression-like behaviors and down-regulates the hyperactivity of HPA axis in chronic unpredictable mild stress model rats. Front Neurosci. 2020;14:680.

    PubMed  PubMed Central  Google Scholar 

  22. Conrad CD, Ortiz JB, Judd JM. Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiol Behav 2017;178:66–81.

    CAS  PubMed  Google Scholar 

  23. Chen Y, Rex CS, Rice CJ et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci U S A 2010;107:13123–13128.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lachize S, Apostolakis EM, van der Laan S et al. Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proc Natl Acad Sci U S A 2009;106:8038–8042.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Post A, Ohl F, Almeida OF et al. Identification of molecules potentially involved in mediating the in vivo actions of the corticotropin-releasing hormone receptor 1 antagonist, NBI30775 (R121919). Psychopharmacol (Berl) 2005;180:150–158.

    CAS  Google Scholar 

  26. Chen Y, Dubé CM, Rice CJ et al. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci 2008;28:2903–2911.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin S, Han YS, Wang YH et al. Effects of Xiaoyao Kangai Jieyu decoction on expression of CRHR1, GR, BDNF mRNA in hippocampus of mice with breast cancer complicated with depression. J Hunan Univ Chin Med 2019;39:584–589 ((in Chinese)).

    Google Scholar 

  28. Liu S, Hagiwara SI, Bhargava A. Early-life adversity, epigenetics, and visceral hypersensitivity. Neurogastroenterol Motil. 2017;29:e13170.

    Google Scholar 

  29. Smith C, Nordstrom E, Sengupta JN, Miranda A. Neonatal gastric suctioning results in chronic visceral and somatic hyperalgesia: Role of corticotropin releasing factor. Neurogastroenterol Motil. 2007;19:692–699.

    CAS  PubMed  Google Scholar 

  30. Hagiwara SI, Kaushal E, Paruthiyil S, Pasricha PJ, Hasdemir B, Bhargava A. Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia. PLoS ONE 2018;13:e0203704.

    PubMed  PubMed Central  Google Scholar 

  31. Liu L, Li Q, Sapolsky R, Liao M, Mehta K, Bhargava A et al. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression- and anxiety-like behavior as adults. PLoS One. 2011;6:e19498.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kihara N, Fujimura M, Yamamoto I, Itoh E, Inui A, Fujimiya M. Effects of central and peripheral urocortin on fed and fasted gastroduodenal motor activity in conscious rats. Am J Physiol Gastrointest Liver Physiol 2001;280:G406–G419.

    CAS  PubMed  Google Scholar 

  33. Bueno L, Fioramonti J. Effects of corticotropin-releasing factor, corticotropin and cortisol on gastrointestinal motility in dogs. Peptides 1986;7:73–77.

    CAS  PubMed  Google Scholar 

  34. Gue M, Fioramonti J, Frexinos J, Alvinerie M, Bueno L. Influence of acoustic stress by noise on gastrointestinal motility in dogs. Dig Dis Sci 1987;32:1411–1417. https://doi.org/10.1007/BF01296668.

    Article  CAS  PubMed  Google Scholar 

  35. Taché Y, Maeda-Hagiwara M, Turkelson CM. Central nervous system action of corticotropin-releasing factor to inhibit gastric emptying in rats. Am J Physiol 1987;253:G241–G245.

    PubMed  Google Scholar 

  36. Lenz HJ, Burlage M, Raedler A, Greten H. Central nervous system effects of corticotropin-releasing factor on gastrointestinal transit in the rat. Gastroenterology 1988;94:598–602.

    CAS  PubMed  Google Scholar 

  37. Broccardo M, Improta G. Pituitary-adrenal and vagus modulation of sauvagine- and CRF-induced inhibition of gastric emptying in rats. Eur J Pharmacol 1990;182:357–362.

    CAS  PubMed  Google Scholar 

  38. Kosoyan HP, Wei JY, Taché Y. Intracisternal sauvagine is more potent than corticotropin-releasing factor to decrease gastric vagal efferent activity in rats. Peptides 1999;20:851–858.

    CAS  PubMed  Google Scholar 

  39. Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF signaling: Biological actions and role in the gastrointestinal tract. Curr Mol Pharmacol 2018;11:51–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tracey KJ. The inflammatory reflex. Nature 2002;420:853–859.

    CAS  PubMed  Google Scholar 

  41. Herriot H, Wrosch C, Gouin JP, Miller GE. Intra-individual cortisol variability and low-grade inflammation over 10 years in older adults. Psychoneuroendocrinology 2017;77:141–149.

    CAS  PubMed  Google Scholar 

  42. Rohleder N. Stress and inflammation—the need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology 2019;105:164–171.

    PubMed  Google Scholar 

  43. Zhu C, Zhao L, Zhao J, Zhang S. Sini San ameliorates duodenal mucosal barrier injury and low-grade inflammation via the CRF pathway in a rat model of functional dyspepsia. Int J Mol Med 2020;45:53–60.

    CAS  PubMed  Google Scholar 

  44. Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 2017;46:77–89.

    PubMed  Google Scholar 

  45. Rosenblat JD, McIntyre RS. Bipolar disorder and immune dysfunction: Epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci 2017;7:144.

    PubMed Central  Google Scholar 

  46. Hou L, Rong P, Wei W, Fang J, Wang D, Zhai W et al. Effect and mechanism study on transcutaneous auricular vagus nerve stimulation for functional dyspepsia model rats. World J Acupunct Moxib 2020;30:49–56.

    Google Scholar 

  47. Drossman DA, Hasler WL. Rome IV-functional GI disorders: Disorders of gut-brain interaction. Gastroenterology 2016;150:1257–1261.

    PubMed  Google Scholar 

  48. Benarroch EE. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin Proceed 1993;68:988–1001.

    CAS  Google Scholar 

  49. Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation at the interface of brain–gut interactions. Cold Spring Harbor Perspect Med. 2018. https://doi.org/10.1101/cshperspect.a034199.

    Article  Google Scholar 

  50. Zeng F, Qin W, Liang F, Liu J, Tang Y, Liu X et al. Abnormal resting brain activity in patients with functional dyspepsia is related to symptom severity. Gastroenterology. 2011;141:499–506.

    PubMed  Google Scholar 

  51. Li Z, Zeng F, Yang Y, Chen Y, Zhang D, Sun J et al. Different cerebral responses to puncturing at ST36 among patients with functional dyspepsia and healthy subjects. Forsch Komplementmed. 2014;21:99–104.

    PubMed  Google Scholar 

  52. Zhou G, Liu P, Wang J, Wen H, Zhu M, Zhao R et al. Fractional amplitude of low-frequency fluctuation changes in functional dyspepsia: A resting-state fMRI study. Magn Reson Imag. 2013;31:996–1000.

    Google Scholar 

  53. Liu P, Qin W, Wang J, Zeng F, Zhou G, Wen H et al. Identifying neural patterns of functional dyspepsia using multivariate pattern analysis: a resting-state FMRI study. PLoS ONE. 2013;8:e68205.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fang J, Rong P, Hong Y et al. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry 2016;79:266–273.

    PubMed  Google Scholar 

  55. Ishibashi S. The effect of auricular electroacupuncture on the neuronal activity of the thalamic and hypothalamic neurons of the rat. Acupunct Electrother Res. 1986;11:15–23.

    CAS  PubMed  Google Scholar 

  56. Ay I, Napadow V, Ay H. Electrical stimulation of the vagus nerve dermatome in the external ear is protective in rat cerebral ischemia. Brain Stimul. 2015;8:7–12.

    PubMed  Google Scholar 

  57. Hong GS, Zillekens A, Schneiker B et al. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol Motil. 2019;31:e13501.

    PubMed  Google Scholar 

  58. Li H, Hu S, Zhang J, Zhou J, Ran H, Tang Y et al. Effects and mechanisms of auricular electroacupuncture on visceral pain induced by colorectal distension in conscious rats. Acupunct Med. 2014;32:472–477.

    PubMed  Google Scholar 

  59. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15:35–37.

    PubMed  Google Scholar 

  60. Mercante B, Ginatempo F, Manca A, Melis F, Enrico P, Deriu F. Anatomo-physiologic basis for auricular stimulation. Med Acupunct. 2018;30:141–150.

    PubMed  PubMed Central  Google Scholar 

  61. Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci 2020;14:284.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (no. 81674027), the 2019 "One Belt and One Road" International Cooperation Program of Traditional Chinese Medicine of China Academy of Chinese Medical Sciences (no. GH201912), and the Central Public-interest Scientific Institution Basal Research Fund (nos. ZZ201915009, ZZ201915012).

Author information

Authors and Affiliations

Authors

Contributions

PJR designed the study and provided financial support. JLF put forward critical revision of the manuscript for important intellectual content. LWH, JLZ, DW, and JYW performed experiments and analyzed the data. LW corrected the spelling, grammar, and punctuation. MZW extensively reviewed English grammar and spelling.

Corresponding author

Correspondence to Pei-jing Rong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental protocol complied with the ethical review standards for animal experiments at Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (lot number: D2019-08-14-2).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Lw., Fang, Jl., Zhang, Jl. et al. Auricular Vagus Nerve Stimulation Ameliorates Functional Dyspepsia with Depressive-Like Behavior and Inhibits the Hypothalamus–Pituitary–Adrenal Axis in a Rat Model. Dig Dis Sci 67, 4719–4731 (2022). https://doi.org/10.1007/s10620-021-07332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07332-4

Keywords

Navigation