Skip to main content

Advertisement

Log in

Insulin-Like Growth Factor 1 Receptor Drives Hepatocellular Carcinoma Growth and Invasion by Activating Stat3-Midkine-Stat3 Loop

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Activation of the insulin-like growth factor 1 receptor (IGF-1R)-mediated Janus kinase (JAK)1/2-Stat3 pathway contributes to hepatocarcinogenesis. Specifically, a previous study showed that IGF-1R inhibition downregulated Midkine expression in hepatocellular carcinoma (HCC).

Aims

The present study investigated the role of IGF-1R-JAK1/2-Stat3 and Midkine signaling in HCC, in addition to the molecular link between the IGF-1R-Stat3 pathway and Midkine.

Methods

The expression levels of IGF-1R, Stat3, and Midkine were measured using reverse transcription-quantitative PCR, following which the association of IGF-1R with Stat3 and Midkine expression was evaluated in HCC. The molecular link between the IGF-1R-Stat3 pathway and Midkine was then investigated in vitro before the effect of IGF-1R-Stat3 and Midkine signaling on HCC growth and invasion was studied in vitro and in vivo.

Results

IGF-1R, Stat3, and Midkine mRNA overexpressions were all found in HCC, where the levels of Stat3 and Midkine mRNA correlated positively with those of IGF-1R. In addition, Midkine mRNA level also correlated positively with Stat3 mRNA expression in HCC tissues. IGF-1R promoted Stat3 activation, which in turn led to the upregulation of Midkine expression in Huh7 cells. Similarly, Midkine also promoted Stat3 activation through potentiating JAK1/2 phosphorylation. Persistent activation of this Stat3-Midkine-Stat3 positive feedback signal loop promoted HCC growth and invasion, the inhibition of which resulted in significant antitumor activities both in vitro and in vivo.

Conclusions

Constitutive activation of the IGF-1R-mediated Stat3-Midkine-Stat3 positive feedback loop is present in HCC, the inhibition of which can serve as a potential therapeutic intervention strategy for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

HCC:

Hepatocellular carcinoma

IGF-1:

Insulin-like growth factor 1

IGF-1R:

Insulin-like growth factor 1 receptor

JAK1/2:

Janus kinase ½

MAPK:

Mitogen-activated protein kinase

MANT:

Matched adjacent nontumorous tissues

MTT:

Methyl thiazolyl tetrazolium

NALT:

Normal adult liver tissues

PI3K:

Phosphatidyl-inositol-3 kinase

qChIP:

Quantitative chromatin immunoprecipitation

PIAS:

Protein inhibitors of activated Stats

RNAi:

RNA interference

SHP:

SH2-containing phosphatases

shRNA:

Short hairpin RNA

siRNAs:

Small interfering RNAs

SOCS:

Suppressors of cytokine signaling

Stat3:

Signal transducer and activator of transcription 3

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132

    Article  PubMed  Google Scholar 

  3. Lee SS, Shin HS, Kim HJ et al. Analysis of prognostic factors and 5-year survival rate in patients with hepatocellular carcinoma: a single-center experience. Korean J Hepatol. 2012;18:48–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Morise Z, Kawabe N, Tomishige H et al. Recent advances in the surgical treatment of hepatocellular carcinoma. World J Gastroenterol. 2014;20:14381–14392

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lim C, Shinkawa H, Hasegawa K et al. Salvage liver transplantation or repeat hepatectomy for recurrent hepatocellular carcinoma: an intent-to-treat analysis. Liver Transplant. 2017;23:1553–1563

    Article  Google Scholar 

  6. Kondo Y, Kimura O, Shimosegawa T. Radiation therapy has been shown to be adaptable for various stages of hepatocellular carcinoma. World J Gastroenterol. 2015;21:94–101

    Article  PubMed Central  PubMed  Google Scholar 

  7. Huang SX, Wu YL, Tang CW et al. Prophylactic hepatic artery infusion chemotherapy improved survival after curative resection in patients with hepatocellular carcinoma. Hepatogastroenterology. 2015;62:122–125

    PubMed  Google Scholar 

  8. Ladju RB, Pascut D, Massi MN et al. Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget. 2017;9:2951–2961

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun Q, Tan Y, Ma GX, Nguyen MT. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol. 2019;25:2279–2293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Girnita L, Worrall C, Takahashi SI et al. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci. 2014;71:2403–2427

    Article  CAS  PubMed  Google Scholar 

  11. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34

    CAS  PubMed  Google Scholar 

  12. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16:143–163

    Article  CAS  PubMed  Google Scholar 

  13. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4:505–518

    Article  CAS  PubMed  Google Scholar 

  14. Werner H. For debate: the pathophysiological significance of IGF-I receptor overexpression: new insights. Pediatr Endocrinol Rev. 2009;7:2–5

    PubMed  Google Scholar 

  15. Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol. 2014;31:805

    Article  PubMed  Google Scholar 

  16. Adachi Y, Yamamoto H, Ohashi H et al. A candidate targeting molecule of insulin-like growth factor-I receptor for gastrointestinal cancers. World J Gastroenterol. 2010;16:5779–5789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yeo CD, Park KH, Park CK et al. Expression of insulin-like growth factor 1 receptor (IGF-1R) predicts poor responses to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer patients harboring activating EGFR mutations. Lung Cancer. 2015;87:311–317

    Article  PubMed  Google Scholar 

  18. Sun WY, Yun HY, Song YJ et al. Insulin-like growth factor 1 receptor expression in breast cancer tissue and mammographic density. Mol Clin Oncol. 2015;3:572–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nakajima N, Kozu K, Kobayashi S et al. The expression of IGF-1R in Helicobacter pylori-infected intestinal metaplasia and gastric cancer. J Clin Biochem Nutr. 2016;59:53–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ryan PD, Goss PE. The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer. Oncologist. 2008;13:16–24

    Article  CAS  PubMed  Google Scholar 

  21. Kamrava M, Gius D, Casagrande G, Kohn E. Will targeting insulin growth factor help us or hurt us?: An oncologist’s perspective. Ageing Res Rev. 2011;10:62–70

    Article  CAS  PubMed  Google Scholar 

  22. Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol. 2004;24:435–444

    Article  CAS  PubMed  Google Scholar 

  23. Kim WY, Prudkin L, Feng L et al. Epidermal growth factor receptor and K-Ras mutations and resistance of lung cancer to insulin-like growth factor 1 receptor tyrosine kinase inhibitors. Cancer. 2012;118:3993–4003

    Article  CAS  PubMed  Google Scholar 

  24. Subramani R, Lopez-Valdez R, Arumugam A et al. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis. PLoS One. 2014;9:e97016

    Article  PubMed Central  PubMed  Google Scholar 

  25. Bie CQ, Liu XY, Cao MR et al. Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits the growth and invasion of hepatocellular carcinoma via down-regulating Midkine expression. Oncotarget. 2016;7:79305–79318

    Article  PubMed Central  PubMed  Google Scholar 

  26. Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers. 2014;6:926–957

    Article  PubMed Central  PubMed  Google Scholar 

  27. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–2576

    Article  CAS  PubMed  Google Scholar 

  28. Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH. Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem. 2000;275:15099–15105

    Article  CAS  PubMed  Google Scholar 

  29. Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19:117–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Belinsky MG, Rink L, Cai KQ et al. The insulin-like growth factor system as a potential therapeutic target in gastrointestinal stromal tumors. Cell Cycle. 2008;7:2949–2955

    Article  CAS  PubMed  Google Scholar 

  31. Steller MA, Delgado CH, Bartels CJ, Woodworth CD, Zou Z. Overexpression of the insulin-like growth factor-1 receptor and autocrine stimulation in human cervical cancer cells. Cancer Res. 1996;56:1761–1765

    CAS  PubMed  Google Scholar 

  32. Kim SO, Park JG, Lee YI. Increased expression of the insulin-like growth factor I (IGF-I) receptor gene in hepatocellular carcinoma cell lines: implications of IGF-I receptor gene activation by hepatitis B virus X gene product. Cancer Res. 1996;56:3831–3836

    CAS  PubMed  Google Scholar 

  33. Tovar V, Alsinet C, Villanueva A et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52:550–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sanchez-Lopez E, Flashner-Abramson E, Shalapour S et al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 Receptor-insulin receptor substrate and STAT3 signalingscript. Oncogene. 2016;35:2634–2644

    Article  CAS  PubMed  Google Scholar 

  35. Wu J, Du J, Fu X et al. Iciartin, a novel FASN inhibitor, exerts anti-melanoma activities through IGF-1R/STAT3 signaling. Oncotarget. 2016;7:51251–51269

    Article  PubMed Central  PubMed  Google Scholar 

  36. Muramatsu T. Midkine: a promising molecule for drug developmentto treat diseases of the central nervous system. Curr Pharm Des. 2011;17:410–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Luo J, Wang X, Xia Z et al. Transcriptional factor specificity protein 1 (SP1) promotes the proliferation of glioma cells by up-regulating midkine (MDK). Mol Biol Cell. 2015;26:430–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 2004;204:127–143

    Article  CAS  PubMed  Google Scholar 

  39. Ibusuki M, Fujimori H, Yamamoto Y et al. Midkine in plasma as a novel breast cancer marker. Cancer Sci. 2009;100:1735–1739

    Article  CAS  PubMed  Google Scholar 

  40. Muramaki M, Miyake H, Hara I, Kamidono S. Introduction of midkine gene into human bladder cancer cells enhances their malignant phenotype but increases their sensitivity to antiangiogenic therapy. Clin Cancer Res. 2003;9:5152–5160

    CAS  PubMed  Google Scholar 

  41. Krzystek-Korpacka M, Diakowska D, Grabowski K, Gamian A. Tumor location determines midkine level and its association with the disease progression in colorectal cancer patients: a pilot study. Int J Colorectal Dis. 2012;27:1319–1324

    Article  PubMed Central  PubMed  Google Scholar 

  42. Koide N, Hada H, Shinji T et al. Expression of the midkine gene in human hepatocellular carcinomas. Hepatogastroenterology. 1999;46:3189–3196

    CAS  PubMed  Google Scholar 

  43. He G, Yu GY, Temkin V et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell. 2010;17:286–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Calvisi DF, Ladu S, Gorden A et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006;130:1117–1128

    Article  CAS  PubMed  Google Scholar 

  45. Dai LC, Yao X, Lu YL et al. Expression of midkine and its relationship with HBV infection in hepatocellular carcinomas. Zhonghua yi xue za zhi. 2003;83:1691–1693

    CAS  PubMed  Google Scholar 

  46. Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem. 2004;79:821–824

    Article  Google Scholar 

  47. Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 2001;19:378–387

    Article  CAS  PubMed  Google Scholar 

  48. Kile BT, Alexander WS. The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci. 2001;58:1627–1635

    Article  CAS  PubMed  Google Scholar 

  49. Starr R, Hilton DJ. Negative regulation of the JAK/STAT pathway. Bioessays. 1999;21:47–52

    Article  CAS  PubMed  Google Scholar 

  50. Fukushima N, Sato N, Sahin F, Su GH, Hruban RH, Goggins M. Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer. 2001;89:338–343

    Article  Google Scholar 

  51. Nagai H, Kim YS, Lee KT et al. Inactivation of SSI-1, a JAK/STAT inhibitor, in human hepatocellular carcinomas, as revealed by two-dimensional electrophoresis. J Hepatol. 2001;34:416–421

    Article  CAS  PubMed  Google Scholar 

  52. Yoshikawa H, Matsubara K, Qian GS et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28:29–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the patients, study investigators, and staff who participated in this study.

Funding

This study was supported by Grants from Shenzhen Science and Technology Project of China (No. JCYJ20160428100513152); Science and Technology Funding Project of Hunan Province, China (No. 2017SK4010); 7th batch Key Laboratory Project of Colleges and Universities of Hunan Province (2019–301); Medical Science and Technology Research Fund of Guangdong Province (No. A2019256); Natural Science Foundation of Guangdong Province (No. 2018A0303130302); and Medical Science and Technology Foundation of Guangdong Province (No. A2018011).

Author information

Authors and Affiliations

Authors

Contributions

S.H.T. designed the study. C.Q.B., Y.F.C., H.J.T., Q.L., L.Z., X.J.P., S.Y., J.Q.L., J.L.L., and S.L.W. performed the experiments. C.Q.B., Y.F.C., H.J.T., and Q.L. conducted statistical analysis. C.Q.B., Y.F.C., and S.H.T. wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Shaohui Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval and consent to participate

The study was approved by the medical ethics committee of the First Affiliated Hospital of Jinan University, China. Written consent was obtained from all participants. This study conforms to the Declaration of Helsinki.

Consent for publication

Written informed consent for publication was obtained from the patients. All authors have agreed to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bie, C., Chen, Y., Tang, H. et al. Insulin-Like Growth Factor 1 Receptor Drives Hepatocellular Carcinoma Growth and Invasion by Activating Stat3-Midkine-Stat3 Loop. Dig Dis Sci 67, 569–584 (2022). https://doi.org/10.1007/s10620-021-06862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-06862-1

Keywords

Navigation