Skip to main content
Log in

Pseudogene Annexin A2 Pseudogene 1 Contributes to Hepatocellular Carcinoma Progression by Modulating Its Parental Gene ANXA2 via miRNA-376a-3p

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Pseudogenes are defined as key regulators in cancer initiation and progression. But their biological function and clinical significance in hepatocellular carcinoma (HCC) remain to be elucidated. In the current study, we identified a novel pseudogene, Annexin A2 pseudogene 1 (ANXA2P1), in HCC and explored its underlining molecular mechanism.

Methods and Results

We analyzed the expression pattern of ANXA2P1 in a TCGA dataset and an HCC sample cohort and evaluated its clinical significance. The biological effects on HCC cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process were assessed by Cell Counting Kit-8 assay, Transwell assay and Western blot, respectively. The ANXA2P1/miR-376a-3p/ANXA2 axis was determined by bioinformatics analysis and dual-luciferase reporter assays. ANXA2P1 exerted as an oncogene that was significantly overexpressed in HCC tissues and was associated with disease progression and unfavorable prognosis of HCC patients. ANXA2P1 knockdown suppressed cell growth, cell migration and invasion and reversed EMT phenotype in HCC. Mechanistically, ANXA2P1 acts as a competing endogenous RNA for miR-376a-3p, thereby leading to the upregulation of its cognate gene ANXA2.

Conclusions

ANXA2P1/miR-376a-3p/ANXA2 axis plays an important role in the progression of HCC. Our findings may provide valuable therapeutic target for treating HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data that support the findings of this study are available from the corresponding authors upon reasonable request.

Abbreviations

HCC:

Hepatocellular carcinoma

ANXA2P1:

Annexin A2 pseudogene 1

EMT:

Epithelial-mesenchymal transition

RPMI:

Roswell Park Memorial Institute

DMEM:

Dulbecco’s Modified Eagle Medium

CCK-8:

Cell Counting Kit 8

lncRNAs:

Long non-coding RNAs

PTENP1:

PTEN tumor suppressor

qRT-PCR:

Quantitative real-time polymerase chain reaction

EdU:

5-Ethynyl-2′-deoxyuridine

TCGA:

The Cancer Genome Atlas

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

References

  1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–1314. https://doi.org/10.1016/S0140-6736(18)30010-2.

    Article  PubMed  Google Scholar 

  2. Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62:394–399. https://doi.org/10.3322/caac.21161.

    Article  PubMed  Google Scholar 

  3. Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014. Chin J Cancer Res. 2018;30:1–12. https://doi.org/10.21147/j.issn.1000-9604.2018.01.01.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–874. https://doi.org/10.1038/nrg3074.

    Article  CAS  PubMed  Google Scholar 

  5. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94. https://doi.org/10.1016/j.cell.2014.03.008.

    Article  CAS  PubMed  Google Scholar 

  6. Milligan MJ, Lipovich L. Pseudogene-derived lncRNAs: emerging regulators of gene expression. Front Genet. 2014;5:476. https://doi.org/10.3389/fgene.2014.00476.

    Article  CAS  PubMed  Google Scholar 

  7. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–1038. https://doi.org/10.1038/nature09144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnsson P, Ackley A, Vidarsdottir L, et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 2013;20:440–446. https://doi.org/10.1038/nsmb.2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qian YY, Li K, Liu QY, Liu ZS. Long non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma. Oncotarget. 2017;8:107859–107869. https://doi.org/10.18632/oncotarget.22305.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shi H, Xiao L, Duan W, et al. ANXA2 enhances the progression of hepatocellular carcinoma via remodeling the cell motility associated structures. Micron. 2016;85:26–33. https://doi.org/10.1016/j.micron.2016.03.008.

    Article  CAS  PubMed  Google Scholar 

  11. Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–658. https://doi.org/10.1016/j.neo.2017.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  13. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:l1. https://doi.org/10.1126/scisignal.2004088.

    Article  CAS  Google Scholar 

  14. Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Prot. 2009;4:44.

    Article  Google Scholar 

  15. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:92–97. https://doi.org/10.1093/nar/gkt1248.

    Article  CAS  Google Scholar 

  16. Basu S, Cheriyamundath S, Ben-Ze’ev A. Cell–cell adhesion: linking Wnt/beta-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res. 2018;. https://doi.org/10.12688/f1000research.15782.1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. An Y, Furber KL, Ji S. Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med. 2017;21:185–192. https://doi.org/10.1111/jcmm.12952.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Gerstein M. Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev. 2004;14:328–335. https://doi.org/10.1016/j.gde.2004.06.003.

    Article  CAS  PubMed  Google Scholar 

  19. Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet. 2015;52:17–24. https://doi.org/10.1136/jmedgenet-2014-102785.

    Article  CAS  PubMed  Google Scholar 

  20. Yang W, Du WW, Li X, Yee AJ, Yang BB. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene. 2016;35:3919–3931. https://doi.org/10.1038/onc.2015.460.

    Article  CAS  PubMed  Google Scholar 

  21. Esposito F, De Martino M, Forzati F, Fusco A. HMGA1-pseudogene overexpression contributes to cancer progression. Cell Cycle. 2014;13:3636–3639. https://doi.org/10.4161/15384101.2014.974440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayashi H, Arao T, Togashi Y, et al. The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene. 2015;34:199–208. https://doi.org/10.1038/onc.2013.547.

    Article  CAS  PubMed  Google Scholar 

  23. Yu G, Yao W, Gumireddy K, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol Cancer Ther. 2014;13:3086–3097. https://doi.org/10.1158/1535-7163.MCT-14-0245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu Q, Liu J, Tang J, Guo DL, Li Y, Duan R. Overexpression of long non-coding RNAs DUXAP9 and DUXAP10 is associated with prognosis in patients with hepatocellular carcinoma after hepatectomy. Int J Clin Exp Pathol. 2018;11:1407–1414.

    PubMed  PubMed Central  Google Scholar 

  25. Kong Y, Zhang L, Huang Y, et al. Pseudogene PDIA3P1 promotes cell proliferation, migration and invasion, and suppresses apoptosis in hepatocellular carcinoma by regulating the p53 pathway. Cancer Lett. 2017;407:76–83. https://doi.org/10.1016/j.canlet.2017.07.031.

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  27. He C, Zhou Z, Jiang H, et al. Epithelial-mesenchymal transition is superior to vessels-encapsulate tumor cluster in promoting metastasis of hepatocellular carcinoma: a morphological evidence. J Cancer. 2017;8:39–47. https://doi.org/10.7150/jca.16736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–134. https://doi.org/10.1038/nrc.2017.118.

    Article  CAS  PubMed  Google Scholar 

  29. Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;19:1438–1449. https://doi.org/10.1038/nm.3336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muro EM, Mah N, Andrade-Navarro MA. Functional evidence of post-transcriptional regulation by pseudogenes. Biochimie. 2011;93:1916–1921. https://doi.org/10.1016/j.biochi.2011.07.024.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Liu S, Guo C, Zong J, Sun MZ. The association of annexin A2 and cancers. Clin Transl Oncol. 2012;14:634–640. https://doi.org/10.1007/s12094-012-0855-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to give our sincere appreciation to the reviewers for their helpful comments on this article.

Funding

This study was funded by the Scientific Research Starting Program of Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan) (SRSP2019016) and Medical Scientific Research Foundation of Guangdong Province of China (2017113015361).

Author information

Authors and Affiliations

Authors

Contributions

Weidong Wang designed and supervised the study. Huohui Ou and Qingbo Liu performed the experiments and acquired result data. Jie Lin and Wei He collected the patient samples and information. Weijie Zhang and Jing Ma helped to review the statistical analysis. Huohui Ou drafted the manuscript. Weidong Wang and Qingbo Liu critically revised the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Weidong Wang.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Consent for publication

Not applicable.

Ethics approval and consent to participate

This animal research was approved by the Ethical Committee of Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1.

Expression of ANXA2P1 in TCGA samples cohort. (JPEG 68 kb)

Figure S2.

The positive correlation between ANXA2P1 and ANXA2 in TCGA samples cohort. (JPEG 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, H., Liu, Q., Lin, J. et al. Pseudogene Annexin A2 Pseudogene 1 Contributes to Hepatocellular Carcinoma Progression by Modulating Its Parental Gene ANXA2 via miRNA-376a-3p. Dig Dis Sci 66, 3903–3915 (2021). https://doi.org/10.1007/s10620-020-06734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06734-0

Keywords

Navigation