Skip to main content
Log in

Mechanisms of Probiotic VSL#3 in a Rat Model of Visceral Hypersensitivity Involves the Mast Cell-PAR2-TRPV1 Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Mast cells (MCs), PAR2 and TRPV1, play a key role in the regulation of visceral pain. Several studies have found that probiotics regulate visceral sensitivity.

Aims

The purpose of the current study was to explore the role of MC-PAR2-TRPV1 in VH and the mechanism of VSL#3 in a rat model of VH.

Methods

A total of 64 rats were randomly divided into eight groups: Control VH, VH + ketotifen, VH + FSLLRY-NH2, VH + SB366791, VH + VSL#3, VH + VSL#3 + capsaicin, and VH + VSL#3 + SLIGRL-NH2. The rat model of VH was induced by acetic acid enema and the partial limb restraint method. VH was assessed by the abdominal withdrawal reflex score. MCs in colonic tissue were detected by the toluidine blue staining assay. The expression of PAR2 and TRPV1 in DRGs (L6–S1) was measured by immunohistochemistry and Western blotting.

Results

The established VH was abolished by treatment with ketotifen, a mast cell stabilizer FSLLRY-NH2, a PAR2 antagonist SB366791 a TRPV1 antagonist, and probiotic VSL#3 in rats. The administration of ketotifen or probiotic VSL#3 caused a decrease in mast cell number in the colon and decreased PAR2 and TRPV1 expression in DRGs. Intrathecal injection of FSLLRY-NH2 or SB366791 caused decreased expression of PAR2 and/or TRPV1 in DRGs in VH rats. SLIGRL-NH2, a PAR2 agonist, and capsaicin, a TRPV1 agonist, blocked the effects of probiotic VSL#3.

Conclusions

The probiotic VSL#3 decreases VH in rat model of VH. The mechanism may be related with the mast cell-PAR2-TRPV1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gerson MJ, Gerson CD. The importance of relationships in patients with irritable bowel syndrome: A review. Gastroenterol Res Pract. 2012;2012:157340.

    Article  PubMed  Google Scholar 

  2. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology.. 2006;130:1480–1491.

    Article  PubMed  Google Scholar 

  3. Saito YA, Schoenfeld P, Locke GR 3rd. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol. 2002;97:1910–1915.

    PubMed  Google Scholar 

  4. Zhang L, Duan L, Liu Y, et al. A meta-analysis of the prevalence and risk factors of irritable bowel syndrome in Chinese community. Zhonghua nei ke za zhi.. 2014;53:969–975.

    PubMed  Google Scholar 

  5. Camilleri M. Peripheral mechanisms in irritable bowel syndrome. N Engl J Med. 2012;367:1626–1635.

    Article  CAS  PubMed  Google Scholar 

  6. Quigley EM, Craig OF. Irritable bowel syndrome; update on pathophysiology and management. Turk J Gastroenterol Off J Turk Soc Gastroenterol. 2012;23:313–322.

    Article  Google Scholar 

  7. Drossman DA, Hasler WL. Rome IV-functional GI disorders: Disorders of gut-brain interaction. Gastroenterology. 2016;150:1257–1261.

    Article  PubMed  Google Scholar 

  8. Amadesi S, Cottrell GS, Divino L, et al. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol. 2006;575:555–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lauria G, Morbin M, Lombardi R, et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J. Peripher Nerv Syst JPNS.. 2006;11:262–271.

    Article  CAS  PubMed  Google Scholar 

  10. Hong S, Fan J, Kemmerer ES, Evans S, Li Y, Wiley JW. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut. 2009;58:202–210.

    Article  CAS  PubMed  Google Scholar 

  11. Ait-Belgnaoui A, Han W, Lamine F, et al. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: A possible action through interaction with epithelial cell cytoskeleton contraction. Gut. 2006;55:1090–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ng SC, Lam FC, Lam TY, et al. Sa2057 Probiotic bacteria VSL#3 alter visceral sensitivity and mucosa-associated intestinal microbiota in patients with irritable bowel syndrome. Gastroenterology. 2012;142:S-391-S-391.

    Google Scholar 

  13. Boer WD, Otten MH, Man WK, Hing A. Sa2070 VSL#3®, a probiotic combination, reduces the severity of abdominal pain and bloating and improves quality of life in irritable bowel syndrome (IBS): Data from a multi-centre, prospective observational study. Gastroenterology. 2012;142:S-394-S-394.

    Google Scholar 

  14. Williams CL, Villar RG, Peterson JM, Burks TF. Stress-induced changes in intestinal transit in the rat: A model for irritable bowel syndrome. Gastroenterology. 1988;94:611–621.

    Article  CAS  PubMed  Google Scholar 

  15. La JH, Kim TW, Sung TS, Kang JW, Kim HJ, Yang IS. Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis. World J Gastroenterol. 2003;9:2791–2795.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kiraly A, Suto G, Tam B, Hermann V, Mozsik G. Vagus-mediated activation of mucosal mast cells in the stomach: effect of ketotifen on gastric mucosal lesion formation and acid secretion induced by a high dose of intracisternal TRH analogue. J Physiol Paris. 2000;94:131–134.

    Article  CAS  PubMed  Google Scholar 

  17. Bao Y, Hou W, Yang L, et al. Increased expression of protease-activated receptor 2 and 4 within dorsal root ganglia in a rat model of bone cancer pain. J Mol Neurosci MN. 2015;55:706–714.

    Article  CAS  PubMed  Google Scholar 

  18. Uchytilova E, Spicarova D, Palecek J. TRPV1 antagonist attenuates postoperative hypersensitivity by central and peripheral mechanisms. Mol Pain.. 2014;10:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai C, Guandalini S, Zhao DH, Jiang M. Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome: A possible action through nitric oxide pathway and enhance barrier function. Mol Cell Biochem.. 2012;362:43–53.

    Article  CAS  PubMed  Google Scholar 

  20. Vergnolle N, Bunnett NW, Sharkey KA, et al. Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat Med.. 2001;7:821–826.

    Article  CAS  PubMed  Google Scholar 

  21. Alier KA, Endicott JA, Stemkowski PL, et al. Intrathecal administration of proteinase-activated receptor-2 agonists produces hyperalgesia by exciting the cell bodies of primary sensory neurons. J Pharmacol Exp Ther.. 2008;324:224–233.

    Article  CAS  PubMed  Google Scholar 

  22. Rijnierse A, Nijkamp FP, Kraneveld AD. Mast cells and nerves tickle in the tummy: implications for inflammatory bowel disease and irritable bowel syndrome. Pharmacol Ther. 2007;116:207–235.

    Article  CAS  PubMed  Google Scholar 

  23. Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology.. 2007;132:26–37.

    Article  CAS  PubMed  Google Scholar 

  24. Buhner S, Li Q, Vignali S, et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology. 2009;137:1425–1434.

    Article  CAS  PubMed  Google Scholar 

  25. Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut. 2016;65:155–168.

    Article  CAS  PubMed  Google Scholar 

  26. Park CH, Joo YE, Choi SK, Rew JS, Kim SJ, Lee MC. Activated mast cells infiltrate in close proximity to enteric nerves in diarrhea-predominant irritable bowel syndrome. J Korean Med Sci. 2003;18:204–210.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guilarte M, Santos J, De TI, et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut. 2007;56:203–209.

    Article  PubMed  Google Scholar 

  28. La JH, Kim TW, Sung TS, Kim HJ, Kim JY, Yang IS. Role of mucosal mast cells in visceral hypersensitivity in a rat model of irritable bowel syndrome. J Vet Sci.. 2004;5:319–324.

    Article  PubMed  Google Scholar 

  29. Heron A, Dubayle D. A focus on mast cells and pain. J Neuroimmunol. 2013;264:1–7.

    Article  CAS  PubMed  Google Scholar 

  30. Wang FB, Powley TL. Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol. 2000;421:302–324.

    Article  CAS  PubMed  Google Scholar 

  31. Lin YM, Fu Y, Winston J, et al. Pathogenesis of abdominal pain in bowel obstruction: Role of mechanical stress-induced upregulation of nerve growth factor in gut smooth muscle cells. Pain.. 2017;158:583–592.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Azpiroz F, Bouin M, Camilleri M, et al. Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc.. 2007;19:62–88.

    Article  CAS  Google Scholar 

  33. Tsang SW, Zhao M, Wu J, Sung JJ, Bian ZX. Nerve growth factor-mediated neuronal plasticity in spinal cord contributes to neonatal maternal separation-induced visceral hypersensitivity in rats. Eur J Pain.. 2012;16:463–472.

    Article  CAS  PubMed  Google Scholar 

  34. Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology.. 2010;138(294–304):e293.

    Google Scholar 

  35. Buhner S, Braak B, Li Q, et al. Neuronal activation by mucosal biopsy supernatants from irritable bowel syndrome patients is linked to visceral sensitivity. Exp Physiol. 2014;99:1299–1311.

    Article  PubMed  Google Scholar 

  36. Valdez-Morales EE, Overington J, Guerrero-Alba R, et al. Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. Am J Gastroenterol. 2013;108:1634–1643.

    Article  CAS  PubMed  Google Scholar 

  37. Amadesi S, Nie J, Vergnolle N, et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci Off J Soc Neurosci. 2004;24:4300–4312.

    Article  CAS  Google Scholar 

  38. Wei H, Wei Y, Tian F, Niu T, Yi G. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury. Physiol Res. 2016;65:145–153.

    CAS  PubMed  Google Scholar 

  39. Liu H, Miller DV, Lourenssen S, Wells RW, Blennerhassett MG, Paterson WG. Proteinase-activated receptor-2 activation evokes oesophageal longitudinal smooth muscle contraction via a capsaicin-sensitive and neurokinin-2 receptor-dependent pathway. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2010;22:210–216, e267.

    Article  CAS  Google Scholar 

  40. Gu Q, Lee LY. Effect of protease-activated receptor 2 activation on single TRPV1 channel activities in rat vagal pulmonary sensory neurons. Exp Physiol. 2009;94:928–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dai Y, Wang S, Tominaga M, et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest. 2007;117:1979–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grant AD, Cottrell GS, Amadesi S, et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol. 2007;578:715–733.

    Article  CAS  PubMed  Google Scholar 

  43. Kawabata A, Kawao N, Kitano T, et al. Colonic hyperalgesia triggered by proteinase-activated receptor-2 in mice: Involvement of endogenous bradykinin. Neurosci Lett. 2006;402:167–172.

    Article  CAS  PubMed  Google Scholar 

  44. Yilmaz Z, Renton T, Yiangou Y, et al. Burning mouth syndrome as a trigeminal small fibre neuropathy: Increased heat and capsaicin receptor TRPV1 in nerve fibres correlates with pain score. J Clin Neurosci Off J Neurosurg Soc Australas. 2007;14:864–871.

    CAS  Google Scholar 

  45. Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology. 2007;132:615–627.

    Article  CAS  PubMed  Google Scholar 

  46. Forsythe P, Wang B, Khambati I, Kunze WA. Systemic effects of ingested Lactobacillus Rhamnosus: Inhibition of mast cell membrane potassium (IKCa) current and degranulation. PloS One.. 2012;7:e41234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawahara T. Inhibitory effect of heat-killed Lactobacillus strain on immunoglobulin E-mediated degranulation and late-phase immune reactions of mouse bone marrow-derived mast cells. Anim Sci J Nihon chikusan Gakkaiho.. 2010;81:714–721.

    CAS  PubMed  Google Scholar 

  48. Kasakura K, Takahashi K, Aizawa T, Hosono A, Kaminogawa S. A TLR2 ligand suppresses allergic inflammatory reactions by acting directly on mast cells. Int Arch Allergy Immunol. 2009;150:359–369.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Nature Science Foundation of China (No. 81300273), the Fund for Scientific Research of The First Hospital of China Medical University (No. FSFH2O1702) and the Liaoning Science and Technology Foundation (No. 20170541052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Dai or Min Jiang.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10620_2018_5416_MOESM1_ESM.tif

HE staining of colonic segments A. Control group B. VH group C. VH + ketotifen group D. VH + FSLLRY-NH2 group E. VH + SB366791 group F. VH + VSL#3 + SLIGRL-NH2 group G. VH + VSL#3 + capsaicin group H. VH + VSL#3 group; n = 8 per group. Scale bar, 200 μm (TIFF 8219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YJ., Dai, C. & Jiang, M. Mechanisms of Probiotic VSL#3 in a Rat Model of Visceral Hypersensitivity Involves the Mast Cell-PAR2-TRPV1 Pathway. Dig Dis Sci 64, 1182–1192 (2019). https://doi.org/10.1007/s10620-018-5416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5416-6

Keywords

Navigation