Skip to main content

Advertisement

Log in

Inhibition of P2X7 receptors by Lu AF27139 diminishes colonic hypersensitivity and CNS prostanoid levels in a rat model of visceral pain

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Visceral pain is a prominent feature of various gastrointestinal diseases. The P2X7 receptor is expressed by multiple cell types including dorsal root ganglion satellite glial cells, macrophages, and spinal microglia, all of which have been implicated in nociceptive sensitization. We have used the selective and CNS penetrant P2X7 receptor antagonist Lu AF27139 to explore this receptor’s role in distinct rat models of inflammatory and visceral hypersensitivity. Rats injected with CFA in the hindpaw displayed a marked reduction in hindpaw mechanical threshold, which was dose-dependently reversed by Lu AF27139 (3–30 mg/kg, p.o.). In rats injected with TNBS in the proximal colon, the colorectal distension threshold measured distally was significantly lower than sham treated rats at 7 days post-injection (P < 0.001), indicative of a marked central sensitization. Colonic hypersensitivity was also reversed by Lu AF27139 (10–100 mg/kg) and by the κ-opioid receptor agonist U-50,488H (3 mg/kg, s.c.). Moreover, both Lu AF27139 and U-50,488H prevented a TNBS-induced increase in spinal and brain levels of PGE2 and LTB4, as well as an increase in brain levels of PGF2α and TXB2. Lu AF27139 was well tolerated as revealed by a lack of significant effect on rotarod motor function and coordination at all doses tested up to 300 mg/kg. Thus, P2X7 receptor antagonism is efficacious in a rat model of visceral pain, via a mechanism which potentially involves attenuation of microglial function within spinal and/or supraspinal pain circuits, albeit a peripheral site of action cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Raw data files are available upon reasonable request from MindImmune Therapeutics https://mindimmune.com/.

References

  1. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008) Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA 105:17151–17156. https://doi.org/10.1073/pnas.0806682105

    Article  Google Scholar 

  2. Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA (2009) Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 136(1339–1348):e1-2. https://doi.org/10.1053/j.gastro.2008.12.044

    Article  CAS  Google Scholar 

  3. Kannampalli P, Pochiraju S, Bruckert M, Shaker R, Banerjee B, Sengupta JN (2014) Analgesic effect of minocycline in rat model of inflammation-induced visceral pain. Eur J Pharmacol 727:87–98. https://doi.org/10.1016/j.ejphar.2014.01.026

    Article  CAS  Google Scholar 

  4. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368. https://doi.org/10.1038/nn1992

    Article  CAS  Google Scholar 

  5. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CBA, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396. https://doi.org/10.1016/j.pain.2005.01.002

    Article  CAS  Google Scholar 

  6. Kobayashi K, Takahashi E, Miyagawa Y, Yamanaka H, Noguchi K (2011) Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model. Neurosci Lett 504:57–61. https://doi.org/10.1016/j.neulet.2011.08.058

    Article  CAS  Google Scholar 

  7. Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J, Austin JS, Zaykin DV, Vander Meulen H, Costigan M, Herbert TA, Yarkoni-Abitbul M, Tichauer D, Livneh J, Gershon E, Zheng M, Tan K, John SL, Slade GD, Jordan J, Woolf CJ, Peltz G, Maixner W, Diatchenko L, Seltzer Z, Salter MW, Mogil JS (2012) Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med 18:595–599. https://doi.org/10.1038/nm.2710

    Article  CAS  Google Scholar 

  8. Tozaki-Saitoh H, Takeda H, Inoue K (2022) The role of microglial purinergic receptors in pain signaling. Molecules 27:1919. https://doi.org/10.3390/molecules27061919

    Article  CAS  Google Scholar 

  9. Westlund KN, Zhang L, Ma F, Oz HS (2012) Chronic inflammation and pain in a tumor necrosis factor receptor (TNFR) (p55/p75-/-) dual deficient murine model. Transl Res 160:84–94. https://doi.org/10.1016/j.trsl.2011.10.003

    Article  CAS  Google Scholar 

  10. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–1283. https://doi.org/10.1016/s0028-3908(97)00140-8

    Article  CAS  Google Scholar 

  11. Zhang XF, Han P, Faltynek CR, Jarvis MF, Shieh CC (2005) Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 1052:63–70. https://doi.org/10.1016/j.brainres.2005.06.022

    Article  CAS  Google Scholar 

  12. Hao Y, Niu H, An S, Wang M, Wang Z (2018) Downregulation of iNOS, IL-1β, and P2X7 Expression in Mast Cells via Activation of PAR4 Contributes to the Inhibition of Visceral Hyperalgesia in Rats. J Immunol Res 2018:3256908. https://doi.org/10.1155/2018/3256908

    Article  CAS  Google Scholar 

  13. Keating C, Pelegrin P, Martínez CM, Grundy D (2011) P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome. J Immunol 187:1467–1474. https://doi.org/10.4049/jimmunol.1100423

    Article  CAS  Google Scholar 

  14. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nature Commun 3:1034. https://doi.org/10.1038/ncomms2023

    Article  CAS  Google Scholar 

  15. Neves AR, Castelo-Branco MT, Figliuolo VR, Bernardazzi C, Buongusto F, Yoshimoto A, Nanini HF, Coutinho CM, Carneiro AJ, Coutinho-Silva R, de Souza HS (2014) Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn’s disease. Inflamm Bowel Dis 20:444–457. https://doi.org/10.1097/01.MIB.0000441201.10454.06

    Article  Google Scholar 

  16. Haas SL, Ruether A, Singer MV, Schreiber S, Böcker U (2007) Functional P2X7 receptor polymorphisms (His155Tyr, Arg307Gln, Glu496Ala) in patients with Crohn’s disease. Scand J Immunol 65:166–170. https://doi.org/10.1111/j.1365-3083.2006.01876.x

    Article  CAS  Google Scholar 

  17. Eser A, Colombel JF, Rutgeerts P, Vermeire S, Vogelsang H, Braddock M, Persson T, Reinisch W (2015) Safety and efficacy of an oral inhibitor of the purinergic receptor P2X7 in adult patients with moderately to severely active Crohn’s disease: a randomized placebo-controlled, double-blind, phase IIa study. Inflamm Bowel Dis 21:2247–2253. https://doi.org/10.1097/MIB.0000000000000514

    Article  Google Scholar 

  18. Hopper AT, Juhl M, Hornberg J, Badolo L, Kilburn JP, Thougaard A, Smagin G, Song D, Calice L, Menon V, Dale E, Zhang H, Cajina M, Nattini ME, Gandhi A, Grenon M, Jones K, Khayrullina T, Chandrasena G, Thomsen C, Zorn SH, Brodbeck R, Poda SB, Staal R, Möller T (2021) Synthesis and characterization of the novel rodent-active and CNS-penetrant P2X7 receptor antagonist Lu AF27139. J Med Chem 64:4891–4902. https://doi.org/10.1021/acs.jmedchem.0c02249

    Article  CAS  Google Scholar 

  19. Staal R, Khayrullina T, Christensen R, Hestehave S, Zhou H, Cajina M, Nattini ME, Gandhi A, Fallon SM, Schmidt M, Zorn SH, Brodbeck RM, Chandrasena G, Segerdahl M, Breysse N, Hopper AT, Möller T, Munro G (2022) P2X7 receptor-mediated release of microglial prostanoids and miRNAs correlates with reversal of neuropathic hypersensitivity in rats. Eur J Pain. https://doi.org/10.1002/ejp.1951

    Article  Google Scholar 

  20. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. https://doi.org/10.1016/0304-3959(83)90201-4

    Article  Google Scholar 

  21. Munro G, Christensen JK, Erichsen HK, Dyhring T, Demnitz J, Dam E, Ahring PK (2016) NS383 selectively inhibits acid-sensing ion channels containing 1a and 3 subunits to reverse inflammatory and neuropathic hyperalgesia in rats. CNS Neurosci Ther 22:135–145. https://doi.org/10.1111/cns.12487

    Article  CAS  Google Scholar 

  22. Diop L, Raymond F, Fargeau H, Petoux F, Chovet M, Doherty AM (2002) Pregabalin (CI-1008) inhibits the trinitrobenzene sulfonic acid-induced chronic colonic allodynia in the rat. J Pharmacol Exp Ther 302:1013–1022. https://doi.org/10.1124/jpet.302.3.1013

    Article  CAS  Google Scholar 

  23. Al-Chaer ED, Kawasaki M, Pasricha PJ (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119:1276–1285. https://doi.org/10.1053/gast.2000.19576

    Article  CAS  Google Scholar 

  24. Bourdu S, Dapoigny M, Chapuy E, Artigue F, Vasson MP, Dechelotte P, Bommelaer G, Eschalier A, Ardid D (2005) Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology 128:1996–2008. https://doi.org/10.1053/j.gastro.2005.03.082

    Article  CAS  Google Scholar 

  25. Gandhi AS, Budac D, Khayrullina T, Staal R, Chandrasena G (2017) Quantitative analysis of lipids: a higher-throughput LC-MS/MS-based method and its comparison to ELISA. Future Sci OA 3:FSO157. https://doi.org/10.4155/fsoa-2016-0067

    Article  CAS  Google Scholar 

  26. Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37:753–760. https://doi.org/10.1124/dmd.108.022814

    Article  CAS  Google Scholar 

  27. Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23:327–338. https://doi.org/10.1002/bdd.325

    Article  CAS  Google Scholar 

  28. Ma QP, Woolf CJ (1996) Progressive tactile hypersensitivity: an inflammation-induced incremental increase in the excitability of the spinal cord. Pain 67:97–106. https://doi.org/10.1016/0304-3959(96)03105-3

    Article  Google Scholar 

  29. Marchand F, D’Mello R, Yip PK, Calvo M, Muller E, Pezet S, Dickenson AH, McMahon SB (2011) Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat. Mol Pain 7:86. https://doi.org/10.1186/1744-8069-7-86

    Article  Google Scholar 

  30. Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF, Valsecchi AE, Sacerdote P, Colleoni M (2008) The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 137:81–95. https://doi.org/10.1016/j.pain.2007.08.017

    Article  CAS  Google Scholar 

  31. Alzate O, Hussain SR, Goettl VM, Tewari AK, Madiai F, Stephens RL Jr, Hackshaw KV (2004) Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. Mol Brain Res 128:193–200. https://doi.org/10.1016/j.molbrainres.2004.06.037

    Article  CAS  Google Scholar 

  32. Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF (2009) Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 157:1203–1214. https://doi.org/10.1111/j.1476-5381.2009.00233.x

    Article  CAS  Google Scholar 

  33. Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F (2021) Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 178:489–514. https://doi.org/10.1111/bph.15299

    Article  CAS  Google Scholar 

  34. Bhattacharya A, Wang Q, Ao H, Shoblock JR, Lord B, Aluisio L, Fraser I, Nepomuceno D, Neff RA, Welty N, Lovenberg TW, Bonaventure P, Wickenden AD, Letavic MA (2013) Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol 170:624–640. https://doi.org/10.1111/bph.12314

    Article  CAS  Google Scholar 

  35. Lord B, Aluisio L, Shoblock JR, Neff RA, Varlinskaya EI, Ceusters M, Lovenberg TW, Carruthers N, Bonaventure P, Letavic MA, Deak T, Drinkenburg W, Bhattacharya A (2014) Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J Pharmacol Exp Ther 351:628–641. https://doi.org/10.1124/jpet.114.218487

    Article  CAS  Google Scholar 

  36. Bhattacharya A, Lord B, Grigoleit JS, He Y, Fraser I, Campbell SN, Taylor N, Aluisio L, O’Connor JC, Papp M, Chrovian C, Carruthers N, Lovenberg TW, Letavic MA (2018) Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology 43:2586–2596. https://doi.org/10.1038/s41386-018-0141-6

    Article  CAS  Google Scholar 

  37. Recourt K, van der Aart J, Jacobs G, de Kam M, Drevets W, van Nueten L, Kanhai K, Siebenga P, Zuiker R, Ravenstijn P, Timmers M, van Gerven J, de Boer P (2020) Characterisation of the pharmacodynamic effects of the P2X7 receptor antagonist JNJ-54175446 using an oral dexamphetamine challenge model in healthy males in a randomised, double-blind, placebo-controlled, multiple ascending dose trial. J Psychopharmacol 34:1030–1042. https://doi.org/10.1177/0269881120914206

    Article  CAS  Google Scholar 

  38. Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, Saijilafu YL, He S, LaVinka PC, Zhou F, Bergles D, Hanani M, Guan Y, Spray DC, Dong X (2016) Coupled activation of primary sensory neurons contributes to chronic pain. Neuron 91:1085–1096. https://doi.org/10.1016/j.neuron.2016.07.044

    Article  CAS  Google Scholar 

  39. Huang TY, Belzer V, Hanani M (2010) Gap junctions in dorsal root ganglia: possible contribution to visceral pain. Eur J Pain 14:49.e1–11. https://doi.org/10.1016/j.ejpain.2009.02.005

    Article  CAS  Google Scholar 

  40. Gao X, Han S, Huang Q, He SQ, Ford NC, Zheng Q, Chen Z, Yu S, Dong X, Guan Y (2021) Calcium imaging in population of dorsal root ganglion neurons unravels novel mechanisms of visceral pain sensitization and referred somatic hypersensitivity. Pain 162:1068–1081. https://doi.org/10.1097/j.pain.0000000000002096

    Article  CAS  Google Scholar 

  41. Marques CC, Castelo-Branco MT, Pacheco RG, Buongusto F, do Rosário A Jr, Schanaider A, Coutinho-Silva R, de Souza HS (2014) Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. Biochim Biophys Acta 1842:65–78. https://doi.org/10.1016/j.bbadis.2013.10.012

    Article  CAS  Google Scholar 

  42. Saber S, Yahya G, Gobba NA, Sharaf H, Alshaman R, Alattar A, Amin NA, El-Shedody R, Aboutouk FH, Abd El-Galeel Y, El-Hefnawy A, Shabaka D, Khalifa A, Saleh R, Osama D, El-Zoghby G, Youssef ME (2021) The supportive role of NSC328382, a P2X7R antagonist, in enhancing the inhibitory effect of CRID3 on NLRP3 inflammasome activation in rats with Dextran sodium sulfate-induced colitis. J Inflamm Res 14:3443–3463. https://doi.org/10.2147/JIR.S315938

    Article  Google Scholar 

  43. Ma J, Li J, Qian M, He N, Cao Y, Liu Y, Wu K, He S (2019) The comprehensive pathophysiological changes in a novel rat model of postinflammatory visceral hypersensitivity. FASEB J 33:13560–13571. https://doi.org/10.1096/fj.201901489R

    Article  CAS  Google Scholar 

  44. Liu PY, Lee IH, Tan PH, Wang YP, Tsai CF, Lin HC, Lee FY, Lu CL (2015) P2X7 receptor mediates spinal microglia activation of visceral hyperalgesia in a rat model of chronic pancreatitis. Cell Mol Gastroenterol Hepatol 1:710-720.e5. https://doi.org/10.1016/j.jcmgh.2015.07.008

    Article  Google Scholar 

  45. Saab CY, Wang J, Gu C, Garner KN, Al-Chaer ED (2006) Microglia: a newly discovered role in visceral hypersensitivity? Neuron Glia Biol 2:271–277. https://doi.org/10.1017/S1740925X07000439

    Article  Google Scholar 

  46. Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M (2010) P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30:573–582. https://doi.org/10.1523/JNEUROSCI.3295-09.2010

    Article  CAS  Google Scholar 

  47. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054. https://doi.org/10.1038/emboj.2009.45

    Article  CAS  Google Scholar 

  48. Zhao P, Waxman SG, Hains BC (2007) Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci 27:2357–2368. https://doi.org/10.1523/JNEUROSCI.0138-07.2007

    Article  CAS  Google Scholar 

  49. Kunori S, Matsumura S, Mabuchi T, Tatsumi S, Sugimoto Y, Minami T, Ito S (2009) Involvement of prostaglandin F 2 alpha receptor in ATP-induced mechanical allodynia. Neuroscience 163:362–371. https://doi.org/10.1016/j.neuroscience.2009.05.069

    Article  CAS  Google Scholar 

  50. Kunori S, Matsumura S, Okuda-Ashitaka E, Katano T, Audoly LP, Urade Y, Ito S (2011) A novel role of prostaglandin E2 in neuropathic pain: blockade of microglial migration in the spinal cord. Glia 59:208–218. https://doi.org/10.1002/glia.21090

    Article  Google Scholar 

  51. Okubo M, Yamanaka H, Kobayashi K, Noguchi K (2010) Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia 58:599–610. https://doi.org/10.1002/glia.20948

    Article  Google Scholar 

  52. Noguchi K, Okubo M (2011) Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biol Pharmaceut Bull 34:1163–1169. https://doi.org/10.1248/bpb.34.1163

    Article  CAS  Google Scholar 

  53. Witting A, Walter L, Wacker J, Möller T, Stella N (2004) P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc Natl Acad Sci USA 101:3214–3219. https://doi.org/10.1073/pnas.0306707101

    Article  CAS  Google Scholar 

  54. Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA 104:10655–10660. https://doi.org/10.1073/pnas.0610811104

    Article  CAS  Google Scholar 

  55. Whitehead KJ, Smith CG, Delaney SA, Curnow SJ, Salmon M, Hughes JP, Chessell IP (2010) Dynamic regulation of spinal pro-inflammatory cytokine release in the rat in vivo following peripheral nerve injury. Brain Behav Immun 24:569–576. https://doi.org/10.1016/j.bbi.2009.12.007

    Article  CAS  Google Scholar 

  56. Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J, Matsumoto S (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129:155–166. https://doi.org/10.1016/j.pain.2006.10.007

    Article  CAS  Google Scholar 

  57. Gebhart GF, Su X, Joshi S, Ozaki N, Sengupta JN (2000) Peripheral opioid modulation of visceral pain. Ann N Y Acad Sci 909:41–50. https://doi.org/10.1111/j.1749-6632.2000.tb06675.x

    Article  CAS  Google Scholar 

  58. Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810. https://doi.org/10.1124/pr.110.004135

    Article  CAS  Google Scholar 

  59. Wang Y, Xu W, Huang P, Chavkin C, Van Bockstaele EJ, Liu-Chen LY (2009) Effects of acute agonist treatment on subcellular distribution of kappa opioid receptor in rat spinal cord. J Neurosci Res 87:1695–1702. https://doi.org/10.1002/jnr.21971

    Article  CAS  Google Scholar 

  60. Inan S, Lee DY, Liu-Chen LY, Cowan A (2009) Comparison of the diuretic effects of chemically diverse kappa opioid agonists in rats: nalfurafine, U50,488H, and salvinorin A. Naunyn Schmiedebergs Arch Pharmacol 379:263–270. https://doi.org/10.1007/s00210-008-0358-8

    Article  CAS  Google Scholar 

  61. Ursu D, Ebert P, Langron E, Ruble C, Munsie L, Zou W, Fijal B, Qian YW, McNearney TA, Mogg A, Grubisha O, Merchant K, Sher E (2014) Gain and loss of function of P2X7 receptors: mechanisms, pharmacology and relevance to diabetic neuropathic pain. Mol Pain 16(10):37. https://doi.org/10.1186/1744-8069-10-37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Rie Christensen and Kirsten Assing for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Roland Staal: conceptualization, validation, writing — original draft, writing — review and editing, visualization, supervision, project administration; Adarsh Gandhi: methodology, investigation; Hua Zhou: methodology, investigation; Manuel Cajina: methodology, investigation; Anne-Marie Jacobsen: methodology, investigation, formal analysis, writing — original draft; Sara Hestehave: methodology, investigation; Allen Hopper: conceptualization, writing — review and editing, supervision; Suresh Poda: methodology, formal analysis; Gamini Chandrasena: formal analysis; Stevin H. Zorn: conceptualization, visualization, project administration, writing — review and editing; Brian Campbell: project administration; Märta Segerdahl: conceptualization; Thomas Möller: conceptualization; Gordon Munro: conceptualization, validation, writing — original draft, writing — review and editing, visualization, supervision.

Corresponding author

Correspondence to Gordon Munro.

Ethics declarations

Ethics approval

Experiments were performed in accordance with Danish legislation (Law no. 474 of May 15th, 2014 and Order no. 88 of January 30, 2013) regulating experiments on animals, which is in compliance with the European Directive 2010/63/EU with specific protocols approved by the Danish Council for Animal Experiments.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staal, R.G.W., Gandhi, A., Zhou, H. et al. Inhibition of P2X7 receptors by Lu AF27139 diminishes colonic hypersensitivity and CNS prostanoid levels in a rat model of visceral pain. Purinergic Signalling 18, 499–514 (2022). https://doi.org/10.1007/s11302-022-09892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09892-0

Keywords

Navigation