Skip to main content

Advertisement

Log in

Are Gastric and Esophageal Metaplasia Relatives? The Case for Barrett’s Stemming from SPEM

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Chronic injury and inflammation in the esophagus can cause a change in cellular differentiation known as metaplasia. Most commonly, the differentiation changes manifest as Barrett’s esophagus (BE), characterized by the normal stratified squamous epithelium converting into a cuboidal–columnar, glandular morphology. BE cells can phenotypically resemble specific normal cell types of the stomach or intestine, or they can have overlapping phenotypes in disorganized admixtures. The stomach can also undergo metaplasia characterized by aberrant gastric or intestinal differentiation patterns. In both organs, it has been argued that metaplasia may represent a recapitulation of the embryonic or juvenile gastrointestinal tract, as cells access a developmental progenitor genetic program that can help repair damaged tissue. Here, we review the normal development of esophagus and stomach, and describe how BE represents an intermixing of cells resembling gastric pseudopyloric (SPEM) and intestinal metaplasia. We discuss a cellular process recently termed “paligenosis” that governs how mature, differentiated cells can revert to a proliferating progenitor state in metaplasia. We discuss the “Cyclical Hit” theory in which paligenosis might be involved in the increased risk of metaplasia for progression to cancer. However, somatic mutations might occur in proliferative phases and then be warehoused upon redifferentiation. Through years of chronic injury and many rounds of paligenosis and dedifferentiation, eventually a cell with a mutation that prevents dedifferentiation may arise and clonally expand fueling stable metaplasia and potentially thereafter acquiring additional mutations and progressing to dysplasia and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–2509.

    Article  PubMed  CAS  Google Scholar 

  3. Spechler SJ, Souza RF. Barrett’s esophagus. N Engl J Med. 2014;371:836–845.

    Article  PubMed  CAS  Google Scholar 

  4. Virchow RK. Ueber Metaplasie: Vortrag, gehalten auf dem internationalen medicinischen Congress in Kopenhagen. Berlin: Georg Reimer; 1884.

    Google Scholar 

  5. Tosh D, Slack JM. How cells change their phenotype. Nat Rev Mol Cell Biol. 2002;3:187–194.

    Article  PubMed  CAS  Google Scholar 

  6. Slack JM. Epithelial metaplasia and the second anatomy. Lancet. 1986;2:268–271.

    Article  PubMed  CAS  Google Scholar 

  7. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17:594–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Adami JG. On growth and overgrowth and on the relationship between cell differentiation and proliferative capacity; its bearing upon the regeneration of tissues and the development of tumors. In: “Festschrift” in Honor of Abraham Jacobi. New York: The Knickerbocker Press; 1900.

  9. Delafield F, Prudden TM, Wood FC. Delafield and Prudden’s Text-Book of Pathology. 16th ed. Baltimore: W. Wood & Company; 1936.

    Google Scholar 

  10. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872.

    Article  PubMed  CAS  Google Scholar 

  12. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–317.

    Article  PubMed  CAS  Google Scholar 

  13. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949–953.

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt PH, Lee JR, Joshi V, et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest. 1999;79:639–646.

    PubMed  CAS  Google Scholar 

  15. Goldenring JR, Nam KT. Oxyntic atrophy, metaplasia, and gastric cancer. Prog Mol Biol Transl Sci. 2010;96:117–131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Goldenring JR, Nam KT, Mills JC. The origin of pre-neoplastic metaplasia in the stomach: chief cells emerge from the Mist. Exp Cell Res. 2011;317:2759–2764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Petersen CP, Mills JC, Goldenring JR. Murine models of gastric corpus preneoplasia. Cell Mol Gastroenterol Hepatol. 2017;3:11–26.

    Article  PubMed  Google Scholar 

  18. Weis VG, Goldenring JR. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer. 2009;12:189–197.

    Article  PubMed  Google Scholar 

  19. Saenz JB, Mills JC. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol. 2018;15:257–273.

    Article  PubMed  CAS  Google Scholar 

  20. Huh WJ, Khurana SS, Geahlen JH, Kohli K, Waller RA, Mills JC. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology. 2012;142:21–24.

    Article  PubMed  CAS  Google Scholar 

  21. Saenz JB, Burclaff J, Mills JC. Modeling murine gastric metaplasia through tamoxifen-induced acute parietal cell loss. Methods Mol Biol. 2016;1422:329–339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Goldenring JR, Ray GS, Coffey RJ, et al. Reversible drug-induced oxyntic atrophy in rats. Gastroenterology. 2000;118:1080–1093.

    Article  PubMed  CAS  Google Scholar 

  23. Nomura S, Yamaguchi H, Ogawa M, Wang TC, Lee JR, Goldenring JR. Alterations in gastric mucosal lineages induced by acute oxyntic atrophy in wild-type and gastrin-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:G362–G375.

    Article  PubMed  CAS  Google Scholar 

  24. Weis VG, Sousa JF, LaFleur BJ, et al. Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut. 2013;62:1270–1279.

    Article  PubMed  CAS  Google Scholar 

  25. Leushacke M, Tan SH, Wong A, et al. Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat Cell Biol. 2017;19:774–786.

    Article  PubMed  CAS  Google Scholar 

  26. Nam KT, Lee HJ, Sousa JF, et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology. 2010;139:2028–2037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Weis VG, Petersen CP, Weis JA, et al. Maturity and age influence chief cell ability to transdifferentiate into metaplasia. Am J Physiol Gastrointest Liver Physiol. 2017;312:G67–G76.

    Article  PubMed  Google Scholar 

  28. Capoccia BJ, Jin RU, Kong YY, et al. The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Invest. 2013;123:1475–1491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lennerz JK, Kim SH, Oates EL, et al. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. Am J Pathol. 2010;177:1514–1533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mills JC, Goldenring JR. Metaplasia in the stomach arises from gastric chief cells. Cell Mol Gastroenterol Hepatol. 2017;4:85–88.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Radyk MD, Burclaff J, Willet SG, Mills JC. Metaplastic cells in the stomach arise, independently of stem cells, via dedifferentiation or transdifferentiation of chief cells. Gastroenterology. 2017;154:257–273.

    Google Scholar 

  32. Hayakawa Y, Fox JG, Wang TC. Isthmus stem cells are the origins of metaplasia in the gastric corpus. Cell Mol Gastroenterol Hepatol. 2017;4:89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hayakawa Y, Ariyama H, Stancikova Y, et al. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell. 2015;28:800–814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kinoshita H, Hayakawa Y, Niu Z, et al. Mature gastric chief cells are not required for the development of metaplasia. Am J Physiol Gastrointest Liver Physiol. 2018;314:G583–G596.

    Article  PubMed  CAS  Google Scholar 

  35. Blaine SA, Ray KC, Anunobi R, Gannon MA, Washington MK, Means AL. Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development. 2010;137:2289–2296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mills JC. Sansom OJ (2015) Reserve stem cells: differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci Signal. 2015;8(385):re8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. De La OJ, Emerson JP, Goodman JL, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci U S A. 2008;105:18907–18912.

    Article  Google Scholar 

  38. Habbe N, Shi G, Meguid RA, et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A. 2008;105:18913–18918.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Houbracken I, de Waele E, Lardon J, et al. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas. Gastroenterology. 2011;141:731–741.

    Article  PubMed  Google Scholar 

  40. Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest. 2010;120:508–520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pinho AV, Rooman I, Reichert M, et al. Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut. 2011;60:958–966.

    Article  PubMed  CAS  Google Scholar 

  42. Mainardi S, Mijimolle N, Francoz S, Vicente-Dueñas C, Sánchez-García I, Barbacid M. Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma. Proc Natl Acad Sci U S A. 2014;111:255–260.

    Article  PubMed  CAS  Google Scholar 

  43. Xu X, Rock JR, Lu Y, et al. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc Natl Acad Sci U S A. 2012;109:4910–4915.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell. 2011;19:754–764.

    Article  PubMed  CAS  Google Scholar 

  45. Sutherland KD, Song JY, Kwon MC, Proost N, Zevenhoven J, Berns A. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. Proc Natl Acad Sci U S A. 2014;111:4952–4957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Park KS, Liang MC, Raiser DM, et al. Characterization of the cell of origin for small cell lung cancer. Cell Cycle. 2011;10:2806–2815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Song H, Yao E, Lin C, Gacayan R, Chen MH, Chuang PT. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci U S A. 2012;109:17531–17536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Willet SG, Lewis MA, Miao ZF et al., Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J. 2018.

  49. Adami JG. On growth and overgrowth and on the relationship between cell differentiation and proliferative capacity: its bearing upon the regeneration of tissues and the development of tumours. Manchester: Sherratt & Hughes; 1900.

    Google Scholar 

  50. Guerra C, Schuhmacher AJ, Cañamero M, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11:291–302.

    Article  PubMed  CAS  Google Scholar 

  51. Carriere C, Young AL, Gunn JR, Longnecker DS, Korc M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun. 2009;382:561–565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Morris JPT, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Krah NM, De La OJP, Swift GH, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. Elife. 2015;4:e07125.

    Article  PubMed Central  Google Scholar 

  54. Collins MA, Bednar F, Zhang Y, et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest. 2012;122:639–653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Cooper CS, Eeles R, Wedge DC, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47:367–372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Forsberg LA, Rasi C, Pekar G, et al. Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer. Genome Res. 2015;25:1521–1535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.

    Article  PubMed  CAS  Google Scholar 

  58. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–175.

    Article  CAS  Google Scholar 

  59. Contino G, Vaughan TL, Whiteman D, Fitzgerald RC. The evolving genomic landscape of Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology. 2017;153:657–673.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gilbert SF, Barresi MJF. Developmental Biology. 11th ed. Sunderland: Sinauer Associates Inc; 2016.

    Google Scholar 

  61. Yu WY, Slack JM, Tosh D. Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol. 2005;284:157–170.

    Article  PubMed  CAS  Google Scholar 

  62. Rosekrans SL, Baan B, Muncan V, van den Brink GR. Esophageal development and epithelial homeostasis. Am J Physiol Gastrointest Liver Physiol. 2015;309:G216–G228.

    Article  PubMed  CAS  Google Scholar 

  63. Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009;136:1899–1907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Que J, Okubo T, Goldenring JR, et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development. 2007;134:2521–2531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Daniely Y, Liao G, Dixon G, et al. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol. 2004;287:C171–C181.

    Article  PubMed  CAS  Google Scholar 

  66. Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–718.

    Article  PubMed  CAS  Google Scholar 

  67. Arnold K, Sarkar A, Yram MA, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9:317–329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jeong Y, Rhee H, Martin S, et al. Identification and genetic manipulation of human and mouse oesophageal stem cells. Gut. 2016;65:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  69. Liu K, Jiang M, Lu Y, et al. Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells. Cell Stem Cell. 2013;12:304–315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang Z, Dollé P, Cardoso WV, Niederreither K. Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev Biol. 2006;297:433–445.

    Article  PubMed  CAS  Google Scholar 

  71. Litingtung Y, Lei L, Westphal H, Chiang C. Sonic hedgehog is essential to foregut development. Nat Genet. 1998;20:58–61.

    Article  PubMed  CAS  Google Scholar 

  72. van Dop WA, Rosekrans SL, Uhmann A, et al. Hedgehog signalling stimulates precursor cell accumulation and impairs epithelial maturation in the murine oesophagus. Gut. 2013;62:348–357.

    Article  PubMed  CAS  Google Scholar 

  73. Li Y, Gordon J, Manley NR, Litingtung Y, Chiang C. Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol. 2008;322:145–155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang DH, Clemons NJ, Miyashita T, et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology. 2010;138:1810–1822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation. 2006;74:422–437.

    Article  PubMed  CAS  Google Scholar 

  76. Rodriguez P, Da Silva S, Oxburgh L, Wang F, Hogan BL, Que J. BMP signaling in the development of the mouse esophagus and forestomach. Development. 2010;137:4171–4176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Jiang M, Ku WY, Zhou Z, et al. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J Clin Invest. 2015;125:1557–1568.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Woo J, Miletich I, Kim BM, Sharpe PT, Shivdasani RA. Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One. 2011;6:e22493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim BM, Miletich I, Mao J, McMahon AP, Sharpe PA, Shivdasani RA. Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen. Development. 2007;134:3603–3613.

    Article  PubMed  CAS  Google Scholar 

  80. Sherwood RI, Maehr R, Mazzoni EO, Melton DA. Wnt signaling specifies and patterns intestinal endoderm. Mech Dev. 2011;128:387–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ohashi S, Natsuizaka M, Yashiro-Ohtani Y, et al. NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network. Gastroenterology. 2010;139:2113–2123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chen X, Qin R, Liu B, et al. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol. 2008;8:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. van Olphen S, Biermann K, Spaander MC, et al. SOX2 as a novel marker to predict neoplastic progression in Barrett’s esophagus. Am J Gastroenterol. 2015;110:1420–1428.

    Article  PubMed  CAS  Google Scholar 

  84. Raghoebir L, Bakker ER, Mills JC, et al. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J Mol Cell Biol. 2012;4:377–385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang X, Ouyang H, Yamamoto Y, et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell. 2011;145:1023–1035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Roman S, Pétré A, Thépot A, et al. Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture. Am J Physiol Gastrointest Liver Physiol. 2007;293:G45–G53.

    Article  PubMed  CAS  Google Scholar 

  87. Hall PA, Woodman AC, Campbell SJ, Shepherd NA. Expression of the p53 homologue p63alpha and ΔNp63alpha in the neoplastic sequence of Barrett’s oesophagus: correlation with morphology and p53 protein. Gut. 2001;49:618–623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Geddert H, Kiel S, Heep HJ, Gabbert HE, Sarbia M. The role of p63 and deltaNp63 (p40) protein expression and gene amplification in esophageal carcinogenesis. Hum Pathol. 2003;34:850–856.

    Article  PubMed  CAS  Google Scholar 

  89. Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze RD. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol. 2001;32:1157–1165.

    Article  PubMed  CAS  Google Scholar 

  90. Blache P, Van de Wetering M, Duluc I, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004;166:37–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Prevot PP, Simion A, Grimont A, et al. Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut. 2012;61:1723–1732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Grimont A, Pinho AV, Cowley MJ, et al. SOX9 regulates ERBB signalling in pancreatic cancer development. Gut. 2015;64:1790–1799.

    Article  PubMed  CAS  Google Scholar 

  93. Roche KC, Gracz AD, Liu XF, Newton V, Akiyama H, Magness ST. SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroenterology. 2015;149:1553–1563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sashikawa Kimura M, Mutoh H, Sugano K. SOX9 is expressed in normal stomach, intestinal metaplasia, and gastric carcinoma in humans. J Gastroenterol. 2011;46:1292–1299.

    Article  PubMed  CAS  Google Scholar 

  95. Clemons NJ, Wang DH, Croagh D, et al. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1335–G1346.

    Article  PubMed  CAS  Google Scholar 

  96. Moore BD, Khurana SS, Huh WJ, Mills JC. Hepatocyte nuclear factor 4alpha is required for cell differentiation and homeostasis in the adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2016;311:G267–G275.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Babeu JP, Darsigny M, Lussier CR, Boudreau F. Hepatocyte nuclear factor 4alpha contributes to an intestinal epithelial phenotype in vitro and plays a partial role in mouse intestinal epithelium differentiation. Am J Physiol Gastrointest Liver Physiol. 2009;297:G124–G134.

    Article  PubMed  CAS  Google Scholar 

  98. Garrison WD, Battle MA, Yang C, Kaestner KH, Sladek FM, Duncan SA. Hepatocyte nuclear factor 4α is essential for embryonic development of the mouse colon. Gastroenterology. 2006;130:1207–1220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Cattin AL, Le Beyec J, Barreau F, et al. Hepatocyte nuclear factor 4α, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol. 2009;29:6294–6308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Colleypriest BJ, Burke ZD, Griffiths LP, et al. Hnf4α is a key gene that can generate columnar metaplasia in oesophageal epithelium. Differentiation. 2017;93:39–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Duggan SP, Behan FM, Kirca M, et al. The characterization of an intestine-like genomic signature maintained during Barrett’s-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival. Sci Rep. 2016;6:32638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Haveri H, Westerholm-Ormio M, Lindfors K, et al. Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol. 2008;8:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Thompson C, Kohlnhofer B, Stavniichuk R, et al. GATA4 regulates development of the squamocolumnar junction in the GI tract: implications for Barrett’s esophagus. Gastroenterology. 2017;152:S87.

    Article  Google Scholar 

  104. Silberg DG, Swain GP, Suh ER, Traber PG. Cdx1 and cdx2 expression during intestinal development. Gastroenterology. 2000;119:961–971.

    Article  PubMed  CAS  Google Scholar 

  105. Beck F. The role of Cdx genes in the mammalian gut. Gut. 2004;53:1394–1396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Almeida R, Silva E, Santos‐Silva F, et al. Expression of intestine-specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. J Pathol. 2003;199:36–40.

    Article  PubMed  CAS  Google Scholar 

  107. Silberg DG, Furth EE, Taylor JK, et al. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology. 1997;113:478–486.

    Article  PubMed  CAS  Google Scholar 

  108. Silberg DG, Sullivan J, Kang E, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology. 2002;122:689–696.

    Article  PubMed  CAS  Google Scholar 

  109. Stairs DB, Kong J, Lynch JP. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia. Prog Mol Biol Transl Sci. 2010;96:231–270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Groisman GM, Amar M, Meir A. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod Pathol. 2004;17:1282–1288.

    Article  PubMed  CAS  Google Scholar 

  111. Wong NA, Wilding J, Bartlett S, et al. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci U S A. 2005;102:7565–7570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Phillips RW, Frierson HF Jr, Moskaluk CA. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol. 2003;27:1442–1447.

    Article  PubMed  Google Scholar 

  113. Kazumori H, Ishihara S, Kinoshita Y. Roles of caudal-related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett’s epithelium development. Gut. 2009;58:620–628.

    Article  PubMed  CAS  Google Scholar 

  114. Kazumori H, Ishihara S, Rumi MA, Kadowaki Y, Kinoshita Y. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut. 2006;55:16–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Huo X, Zhang HY, Zhang XI, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett’s esophagus. Gastroenterology. 2010;139:194–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Marchetti M, Caliot E, Pringault E. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci. 2003;116:1429–1436.

    Article  PubMed  CAS  Google Scholar 

  117. Quante M, Bhagat G, Abrams JA, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell. 2012;21:36–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gao N, White P, Kaestner KH. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell. 2009;16:588–599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Minacapelli CD, Bajpai M, Geng X, et al. Barrett’s metaplasia develops from cellular reprogramming of esophageal squamous epithelium due to gastroesophageal reflux. Am J Physiol Gastrointest Liver Physiol. 2017;312:G615–G622.

    Article  PubMed  Google Scholar 

  120. Mari L, Milano F, Parikh K, et al. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep. 2014;7:1197–1210.

    Article  PubMed  CAS  Google Scholar 

  121. Kong J, Crissey MA, Funakoshi S, Kreindler JL, Lynch JP. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett’s esophagus. PLoS One. 2011;6:e18280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kong J, Nakagawa H, Isariyawongse BK, et al. Induction of intestinalization in human esophageal keratinocytes is a multistep process. Carcinogenesis. 2009;30:122–130.

    Article  PubMed  CAS  Google Scholar 

  123. Milano F, Van Baal JW, Buttar NS, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology. 2007;132:2412–2421.

    Article  PubMed  CAS  Google Scholar 

  124. Liu T, Zhang X, So CK, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis. 2007;28:488–496.

    Article  PubMed  CAS  Google Scholar 

  125. Stairs DB, Nakagawa H, Klein-Szanto A, et al. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS One. 2008;3:e3534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Vega ME, Giroux V, Natsuizaka M, et al. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett’s-like metaplasia via KLF4. Cell Cycle. 2014;13:3857–3866.

    Article  PubMed  CAS  Google Scholar 

  127. Coad RA, Woodman AC, Warner PJ, Barr H, Wright NA, Shepherd NA. On the histogenesis of Barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol. 2005;206:388–394.

    Article  PubMed  Google Scholar 

  128. Li H, Walsh TN, O’Dowd G, Gillen P, Byrne PJ, Hennessy TP. Mechanisms of columnar metaplasia and squamous regeneration in experimental Barrett’s esophagus. Surgery. 1994;115:176–181.

    PubMed  CAS  Google Scholar 

  129. Garman KS, Kruger L, Thomas S, et al. Ductal metaplasia in oesophageal submucosal glands is associated with inflammation and oesophageal adenocarcinoma. Histopathology. 2015;67:771–782.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Leedham SJ, Preston SL, McDonald SA, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut. 2008;57:1041–1048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kruger L, Gonzalez LM, Pridgen TA, et al. Ductular and proliferative response of esophageal submucosal glands in a porcine model of esophageal injury and repair. Am J Physiol Gastrointest Liver Physiol. 2017;313:G180–G191.

    Article  PubMed  PubMed Central  Google Scholar 

  132. von Furstenberg RJ, Li J, Stolarchuk C, et al. Porcine esophageal submucosal gland culture model shows capacity for proliferation and differentiation. Cell Mol Gastroenterol Hepatol. 2017;4:385–404.

    Article  Google Scholar 

  133. Sarosi G, Brown G, Jaiswal K, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus. 2008;21:43–50.

    Article  PubMed  CAS  Google Scholar 

  134. McDonald SA, Lavery D, Wright NA, Jansen M. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol. 2015;12:50–60.

    Article  PubMed  Google Scholar 

  135. Lavery DL, Nicholson AM, Poulsom R, et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut. 2014;63:1854–1863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Jiang M, Li H, Zhang Y, et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature. 2017;550:529–533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Jin RU, Mills JC. Congenital and acquired diseases of the stomach. In: Translational Research and Discovery in Gastroenterology: Organogenesis to Disease, 1st edition. 2014.

  138. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16:351–380.

    Article  PubMed  CAS  Google Scholar 

  139. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–6740.

    PubMed  CAS  Google Scholar 

  140. Willet SG, Mills JC. Stomach Organ and Cell Lineage Differentiation: from Embryogenesis to Adult Homeostasis. Cell Mol Gastroenterol Hepatol. 2016;2:546–559.

    Article  PubMed  PubMed Central  Google Scholar 

  141. McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol. 2017;66:36–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. McCracken KW, Catá EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516:400–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol. 2018;435:839–843.

    Article  CAS  Google Scholar 

  144. Mutoh H, Hakamata Y, Sato K, et al. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun. 2002;294:470–479.

    Article  PubMed  CAS  Google Scholar 

  145. Grainger S, Savory JG, Lohnes D. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol. 2010;339:155–165.

    Article  PubMed  CAS  Google Scholar 

  146. Stringer EJ, Duluc I, Saandi T, et al. Cdx2 determines the fate of postnatal intestinal endoderm. Development. 2012;139:465–474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–1060.

    Article  PubMed  CAS  Google Scholar 

  148. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11:1061–1072.

    Article  PubMed  CAS  Google Scholar 

  149. Battle MA, Bondow BJ, Iverson MA, et al. GATA4 is essential for jejunal function in mice. Gastroenterology. 2008;135:1676–1686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Bosse T, Piaseckyj CM, Burghard E, et al. Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol. 2006;26:9060–9070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Jacobsen CM, Mannisto S, Porter‐Tinge S, et al. GATA-4:FOG interactions regulate gastric epithelial development in the mouse. Dev Dyn. 2005;234:355–362.

    Article  PubMed  CAS  Google Scholar 

  152. Jacobsen CM, Narita N, Bielinska M, et al. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol. 2002;241:34–46.

    Article  PubMed  CAS  Google Scholar 

  153. Duncan SA, Manova K, Chen WS, et al. Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc Natl Acad Sci U S A. 1994;91:7598–7602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Offield MF, Jetton TL, Labosky PA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122:983–995.

    PubMed  CAS  Google Scholar 

  155. Larsson LI, Madsen OD, Serup P, Jonsson J, Edlund H. Pancreatic-duodenal homeobox 1 -role in gastric endocrine patterning. Mech Dev. 1996;60:175–184.

    Article  PubMed  CAS  Google Scholar 

  156. Holland AM, Garcia S, Naselli G, MacDonald RJ, Harrison LC. The Parahox gene Pdx1 is required to maintain positional identity in the adult foregut. Int J Dev Biol. 2013;57:391–398.

    Article  PubMed  CAS  Google Scholar 

  157. Verzi MP, Stanfel MN, Moses KA, et al. Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology. 2009;136:1701–1710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Self M, Geng X, Oliver G. Six2 activity is required for the formation of the mammalian pyloric sphincter. Dev Biol. 2009;334:409–417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Udager AM, Prakash A, Saenz DA, et al. Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3. Gastroenterology. 2014;146:157–165.

    Article  PubMed  CAS  Google Scholar 

  160. Prakash A, Udager AM, Saenz DA, Gumucio DL. Roles for Nkx2-5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments. Am J Physiol Gastrointest Liver Physiol. 2014;307:G430–G436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Merchant JL. Hedgehog signalling in gut development, physiology and cancer. J Physiol. 2012;590:421–432.

    Article  PubMed  CAS  Google Scholar 

  162. Merchant JL, Ding L. Hedgehog signaling links chronic inflammation to gastric cancer precursor lesions. Cell Mol Gastroenterol Hepatol. 2017;3:201–210.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Konstantinou D, Bertaux-Skeirik N, Zavros Y. Hedgehog signaling in the stomach. Curr Opin Pharmacol. 2016;31:76–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–2772.

    PubMed  CAS  Google Scholar 

  165. Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development. 2010;137:1721–1729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Aubin J, Déry U, Lemieux M, Chailler P, Jeannotte L. Stomach regional specification requires Hoxa5-driven mesenchymal-epithelial signaling. Development. 2002;129:4075–4087.

    PubMed  CAS  Google Scholar 

  167. Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci U S A. 2005;102:1490–1495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Kim SK, Hebrok M, Li E, et al. Activin receptor patterning of foregut organogenesis. Genes Dev. 2000;14:1866–1871.

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Spencer-Dene B, Sala FG, Bellusci B, Gschmeissner S, Stamp G, Dickson C. Stomach development is dependent on fibroblast growth factor 10/fibroblast growth factor receptor 2b-mediated signaling. Gastroenterology. 2006;130:1233–1244.

    Article  PubMed  CAS  Google Scholar 

  170. McCracken KW, Aihara E, Martin B, et al. Wnt/beta-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541:182–187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Ye W, Takabayashi H, Yang Y, et al. Regulation of gastric Lgr5 + ve cell homeostasis by bone morphogenetic protein (BMP) signaling and inflammatory stimuli. Cell Mol Gastroenterol Hepatol. 2018;5:523–538.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shinohara M, Mao M, Keeley TM, et al. Bone morphogenetic protein signaling regulates gastric epithelial cell development and proliferation in mice. Gastroenterology. 2010;139:2050–2060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Huh WJ, Mysorekar IU, Mills JC. Inducible activation of Cre recombinase in adult mice causes gastric epithelial atrophy, metaplasia, and regenerative changes in the absence of “floxed” alleles. Am J Physiol Gastrointest Liver Physiol. 2010;299:G368–G380.

    Article  PubMed  CAS  Google Scholar 

  174. Frankfurt OS. Cell proliferation and differentiation in the squamous epithelium of the forestomach of the mouse. Exp Cell Res. 1967;46:603–606.

    Article  PubMed  CAS  Google Scholar 

  175. Karam S, Leblond CP. Origin and migratory pathways of the eleven epithelial cell types present in the body of the mouse stomach. Microsc Res Tech. 1995;31:193–214.

    Article  PubMed  CAS  Google Scholar 

  176. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat Rec. 1993;236:259–279.

    Article  PubMed  CAS  Google Scholar 

  177. Karam SM, Straiton T, Hassan WM, Leblond CP. Defining epithelial cell progenitors in the human oxyntic mucosa. Stem Cells. 2003;21:322–336.

    Article  PubMed  Google Scholar 

  178. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat Rec. 1993;236:280–296.

    Article  PubMed  CAS  Google Scholar 

  179. Karam SM. Dynamics of epithelial cells in the corpus of the mouse stomach. IV. Bidirectional migration of parietal cells ending in their gradual degeneration and loss. Anat Rec. 1993;236:314–332.

    Article  PubMed  CAS  Google Scholar 

  180. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. III. Inward migration of neck cells followed by progressive transformation into zymogenic cells. Anat Rec. 1993;236:297–313.

    Article  PubMed  CAS  Google Scholar 

  181. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. V. Behavior of entero-endocrine and caveolated cells: general conclusions on cell kinetics in the oxyntic epithelium. Anat Rec. 1993;236:333–340.

    Article  PubMed  CAS  Google Scholar 

  182. Lee ER. Dynamic histology of the antral epithelium in the mouse stomach: III. Ultrastructure and renewal of pit cells. Am J Anat. 1985;172:225–240.

    Article  PubMed  CAS  Google Scholar 

  183. Lee ER, Leblond CP. Dynamic histology of the antral epithelium in the mouse stomach: II. Ultrastructure and renewal of isthmal cells. Am J Anat. 1985;172:205–224.

    Article  PubMed  CAS  Google Scholar 

  184. Lee ER, Leblond CP. Dynamic histology of the antral epithelium in the mouse stomach: IV. Ultrastructure and renewal of gland cells. Am J Anat. 1985;172:241–259.

    Article  PubMed  CAS  Google Scholar 

  185. Nozaki K, Ogawa M, Williams JA, et al. A molecular signature of gastric metaplasia arising in response to acute parietal cell loss. Gastroenterology. 2008;134:511–522.

    Article  PubMed  CAS  Google Scholar 

  186. Matsuo J, Kimura S, Yamamura A, et al. Identification of stem cells in the epithelium of the stomach corpus and antrum of mice. Gastroenterology. 2017;152:218–231.

    Article  PubMed  Google Scholar 

  187. Goldenring JR, Nam KT, Wang TC, Mills JC, Wright NA. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 2010;138:2207–2210.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Choi E, Hendley AM, Bailey JM, Leach SD, Goldenring JR. Expression of activated Ras in gastric chief cells of mice leads to the full spectrum of metaplastic lineage transitions. Gastroenterology. 2016;150:918–930.

    Article  PubMed  CAS  Google Scholar 

  189. Nam KT, Lee HJ, Mok H, et al. Amphiregulin-deficient mice develop spasmolytic polypeptide expressing metaplasia and intestinal metaplasia. Gastroenterology. 2009;136:1288–1296.

    Article  PubMed  CAS  Google Scholar 

  190. Yoshizawa N, Takenaka Y, Yamaguchi H, et al. Emergence of spasmolytic polypeptide-expressing metaplasia in Mongolian gerbils infected with Helicobacter pylori. Lab Invest. 2007;87:1265–1276.

    Article  PubMed  CAS  Google Scholar 

  191. Warson C, Van de Bovenkamp JH, Korteland-Van Male AM, et al. Barrett’s esophagus is characterized by expression of gastric-type mucins (MUC5AC, MUC6) and TFF peptides (TFF1 and TFF2), but the risk of carcinoma development may be indicated by the intestinal-type mucin, MUC2. Hum Pathol. 2002;33:660–668.

    Article  PubMed  CAS  Google Scholar 

  192. Hanby AM, Jankowski JA, Elia G, Poulsom R, Wright NA. Expression of the trefoil peptides pS2 and human spasmolytic polypeptide (hSP) in Barrett’s metaplasia and the native oesophageal epithelium: delineation of epithelial phenotype. J Pathol. 1994;173:213–219.

    Article  PubMed  CAS  Google Scholar 

  193. Arul GS, Moorghen M, Myerscough N, Alderson DA, Spicer RD, Corfield AP. Mucin gene expression in Barrett’s oesophagus: an in situ hybridisation and immunohistochemical study. Gut. 2000;47:753–761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Lavery DL, Martinez P, Gay LJ, et al. Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett’s oesophagus. Gut. 2016;65:907–913.

    Article  PubMed  CAS  Google Scholar 

  195. Cotton CC, Wolf WA, Overholt BF, et al. Late recurrence of Barrett’s esophagus after complete eradication of intestinal metaplasia is rare: final report from ablation in intestinal metaplasia containing dysplasia trial. Gastroenterology. 2017;153:681–688.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Haidry RJ, Butt MA, Dunn JM, et al. Improvement over time in outcomes for patients undergoing endoscopic therapy for Barrett’s oesophagus-related neoplasia: 6-year experience from the first 500 patients treated in the UK patient registry. Gut. 2015;64:1192–1199.

    Article  PubMed  CAS  Google Scholar 

  197. Pavlov K, Meijer C, van den Berg A, Peters FTM, Kruyt FAE, Kleibeuker JH. Embryological signaling pathways in Barrett’s metaplasia development and malignant transformation; mechanisms and therapeutic opportunities. Crit Rev Oncol Hematol. 2014;92:25–37.

    Article  PubMed  CAS  Google Scholar 

  198. Xian W, McKeon F. Barrett’s Stem Cells as a Unique and Targetable Entity. Cell Mol Gastroenterol Hepatol. 2017;4:161–164.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support provided by the NIDDK R01s (DK094989, DK105129, DK110406), Alvin J. Siteman Cancer Center/Barnes Jewish Hospital Foundation Cancer Frontier Fund, NIH NCI P30 CA091842, The Barnard Trust, and DeNardo Education and Research Foundation Grants to J.C.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Mills.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, R.U., Mills, J.C. Are Gastric and Esophageal Metaplasia Relatives? The Case for Barrett’s Stemming from SPEM. Dig Dis Sci 63, 2028–2041 (2018). https://doi.org/10.1007/s10620-018-5150-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5150-0

Keywords

Navigation