Skip to main content

Advertisement

Log in

KLF15 Inhibits Cell Proliferation in Gastric Cancer Cells via Up-Regulating CDKN1A/p21 and CDKN1C/p57 Expression

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Krüppel-like factors (KLFs) have been identified in multi-cancers and act as oncogenes or tumor suppressors. The function of KLF15, one member of KLFs, has not been well elucidated, especially in gastric cancer (GC).

Aims

This study was designed to investigate the prognostic value and biological functions of KLF15 in GC.

Methods

KLF15 protein expression in GC patients was evaluated by immunohistochemistry assays in 50 paired GC tissues and adjacent normal tissues, and correlations between KLF15 expression and clinicopathological characteristics and prognosis were analyzed. Then, we investigated the over-expression of KLF15 on cell proliferation and its mechanism in GC cells.

Results

KLF15 expression levels were significantly down-regulated in GC tissues compared to adjacent normal tissues. And KLF15 expression was negatively correlated with clinical stage, lymphatic metastasis, and distant metastasis. Furthermore, KLF15 expression could predict prognosis in patients with GC. Moreover, over-expression of KLF15 could inhibit cell proliferation partly via regulating CDKN1A/p21 and CDKN1C/p57.

Conclusion

These findings demonstrate that KLF15 plays a significant role in GC progression and could be a therapeutic target for GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132.

    Article  PubMed  Google Scholar 

  3. Ohtsu A. Chemotherapy for metastatic gastric cancer: past, present, and future. J Gastroenterol. 2008;43:256–264.

    Article  CAS  PubMed  Google Scholar 

  4. Fenech M. The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis. 2005;20:255–269.

    Article  CAS  PubMed  Google Scholar 

  5. Komori T, Takemasa I, Yamasaki M, et al. Gene expression of colorectal cancer: preoperative genetic diagnosis using endoscopic biopsies. Int J Oncol. 2008;32:367–375.

    CAS  PubMed  Google Scholar 

  6. Udler M, Maia AT, Cebrian A, et al. Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer. J Clin Oncol. 2007;25:3015–3023.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Galvao J, Beach KM, et al. Novel roles and mechanism for Krüppel-like factor 16 (KLF16) regulation of neurite outgrowth and ephrin receptor A5 (EphA5) expression in retinal ganglion cells. J Biol Chem. 2016;291:18084–18095.

    Article  CAS  PubMed  Google Scholar 

  8. Liang K, Liu T, Chu N, et al. KLF8 is required for bladder cancer cell proliferation and migration. Biotechnol Appl Biochem. 2015;62:628–633.

    Article  CAS  PubMed  Google Scholar 

  9. Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol. 2008;40:1996–2001.

    Article  CAS  PubMed  Google Scholar 

  10. Limame R, de Beeck KO, Lardon F, De Wever O, Pauwels P. Krüppel-like factors in cancer progression: three fingers on the steering wheel. Oncotarget. 2014;5:29–48.

    PubMed  Google Scholar 

  11. Ray S, Pollard JW. KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proc Natl Acad Sci USA. 2012;109:E1334–E1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol. 2003;4:206.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu Q, Liu M, Zhang J, et al. Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway. Oncotarget. 2016;7:60290–60302.

  14. Yin L, Wang JP, Xu TP, et al. Downregulation of Krüppel-like factor 2 is associated with poor prognosis for nonsmall-cell lung cancer. Tumour Biol. 2015;36:3075–3084.

    Article  CAS  PubMed  Google Scholar 

  15. Chia NY, Deng N, Das K, et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut. 2015;64:707–719.

    Article  CAS  PubMed  Google Scholar 

  16. Tseng WC, Chuang CW, Yang MH, Pan CC, Tarng DC. Krüppel-like factor 4 is a novel prognostic predictor for urothelial carcinoma of bladder and it regulates TWIST1-mediated epithelial-mesenchymal transition. Urol Oncol. 2016;34:485 e415–485 e424.

    Article  Google Scholar 

  17. Benzeno S, Narla G, Allina J, et al. Cyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1. Can Res. 2004;64:3885–3891.

    Article  CAS  Google Scholar 

  18. Uchida S, Tanaka Y, Ito H, et al. Transcriptional regulation of the CLC-K1 promoter by myc-associated zinc finger protein and kidney-enriched Krüppel-like factor, a novel zinc finger repressor. Mol Cell Biol. 2000;20:7319–7331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernandez-Zapico ME, Lomberk GA, Tsuji S, et al. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem J. 2011;435:529–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gray S, Feinberg MW, Hull S, et al. The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. 2002;277:34322–34328.

    Article  CAS  PubMed  Google Scholar 

  21. Yoda T, McNamara KM, Miki Y, et al. KLF15 in breast cancer: a novel tumor suppressor? Cell Oncol (Dordr). 2015;38:227–235.

    Article  CAS  Google Scholar 

  22. Xu TP, Huang MD, Xia R, et al. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol. 2014;7:63.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang K, Ren Y, Liu Y, Zhang J, He JJ. MiR-4262 promotes proliferation and invasion of human breast cancer cells through directly targeting KLF6 and KLF15. Oncol Res. 2016;25:277–283.

  24. Li JR, Sun CH, Li W, et al. Cancer RNA-Seq Nexus: a database of phenotype-specific transcriptome profiling in cancer cells. Nucleic Acids Res. 2016;44:D944–D951.

    Article  PubMed  Google Scholar 

  25. Yang Y, Tarapore RS, Jarmel MH, Tetreault MP, Katz JP. p53 mutation alters the effect of the esophageal tumor suppressor KLF5 on keratinocyte proliferation. Cell Cycle. 2012;11:4033–4039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14:165.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Q, Dong Z, Zhou F, Cai X, Gao Y, Wang LW. Krüppel-like factor 5 promotes lung tumorigenesis through upregulation of Sox4. Cell Physiol Biochem. 2014;33:1–10.

    Article  PubMed  Google Scholar 

  28. Jiang Z, Zhang Y, Cao R, et al. MiR-5195-3p inhibits proliferation and invasion of human bladder cancer cells by directly targeting oncogene KLF5. Oncol Res. 2017. doi:10.3727/096504016X14831120463349.

    Google Scholar 

  29. Xu TP, Liu XX, Xia R, et al. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene. 2015;34:5648–5661.

    Article  CAS  PubMed  Google Scholar 

  30. Nagata T, Shimada Y, Sekine S, et al. KLF4 and NANOG are prognostic biomarkers for triple-negative breast cancer. Breast Cancer. 2016;24:326–335.

  31. Zhang N, Zhang J, Shuai L, et al. Krüppel-like factor 4 negatively regulates beta-catenin expression and inhibits the proliferation, invasion and metastasis of gastric cancer. Int J Oncol. 2012;40:2038–2048.

    CAS  PubMed  Google Scholar 

  32. Yu F, Shi Y, Wang J, Li J, Fan D, Ai W. Deficiency of Krüppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells. Int J Cancer. 2013;133:2872–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu T, Chen X, Lin T, et al. KLF4 deletion alters gastric cell lineage and induces MUC2 expression. Cell Death Dis. 2016;7:e2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Wang B, Chen LQ, et al. miR-10b promotes invasion by targeting KLF4 in osteosarcoma cells. Biomed Pharmacother. 2016;84:947–953.

    Article  CAS  PubMed  Google Scholar 

  35. Soon MS, Hsu LS, Chen CJ, et al. Expression of Krüppel-like factor 5 in gastric cancer and its clinical correlation in Taiwan. Virchows Arch. 2011;459:161–166.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer SE, Hasenstein JR, Baktula A, et al. Krüppel-like factor 5 is not required for K-RasG12D lung tumorigenesis, but represses ABCG2 expression and is associated with better disease-specific survival. Am J Pathol. 2010;177:1503–1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Liu X, Xu Y, et al. KLF5 promotes hypoxia-induced survival and inhibits apoptosis in non-small cell lung cancer cells via HIF-1α. Int J Oncol. 2014;45:1507–1514.

    CAS  PubMed  Google Scholar 

  38. Wade HE, Kobayashi S, Eaton ML, et al. Multimodal regulation of E2F1 gene expression by progestins. Mol Cell Biol. 2010;30:1866–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008;14:159–169.

    Article  CAS  PubMed  Google Scholar 

  40. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Natural Science Foundation of China for supporting this study (Grant Numbers 81672896, 81302012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Yongqian Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed according to the ethical standards of the institutional research committee and the standards set in the Declaration of Helsinki 1975. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Yongqian Shu is the first corresponding author of this article.

Chongqi Sun, Pei Ma, Yanfen Wang, and Weitao Liu contributed equally to this work and should be regarded as joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Effects of KLF15 on KLF2 or KLF5 in GC cell lines. A. Real-time PCR analysis of KLF2 mRNA expression after over-expression of KLF15 in AGS and SGC-7901. Bars: SD. B. Real-time PCR analysis of KLF2 mRNA expression after over-expression of KLF15 in AGS and SGC-7901. Bars: SD (TIFF 2966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Ma, P., Wang, Y. et al. KLF15 Inhibits Cell Proliferation in Gastric Cancer Cells via Up-Regulating CDKN1A/p21 and CDKN1C/p57 Expression. Dig Dis Sci 62, 1518–1526 (2017). https://doi.org/10.1007/s10620-017-4558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4558-2

Keywords

Navigation