Skip to main content
Log in

New high-throughput screening method for Chinese hamster ovary cell lines expressing low reduced monoclonal antibody levels: application of a system controlling the gas phase over cell lysates in miniature bioreactors and facilitating multiple sample setup

  • Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Interchain disulfide bonds in monoclonal antibodies may be reduced during large-scale mAb production using Chinese hamster ovary (CHO) cells. This reaction lowers the mAb product yield and purity; however, it may be prevented by screening cell lines that are unsusceptible to reduction and using them in mAb production. Antibody reduction susceptibility may be cell line-dependent. To the best of our knowledge, however, an efficient method of screening reduction-unsusceptible CHO cell lines has not been previously reported. Here, we report a novel screening method that can simultaneously detect and identify mAb reduction susceptibility in lysates containing ≤ 48 CHO cell lines. This evaluation system was equally effective and generated similar results at all culture scales, including 250 mL, 3 L, and 1000 L. Furthermore, we discovered that reduction-susceptible cell lines contained higher total intracellular nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+ concentrations than reduction-unsusceptible cell lines, regardless of whether they expressed immunoglobulin (Ig)G4 or IgG1. NADPH or NADP+ supplementation in the lysate of reduction-unsusceptible cells resulted in mAb reduction. Application of the innovative CHO cell line screening approach could mitigate or prevent reductions in large-scale mAb generation from CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

We thank Yuka Mashio for helping with sample preparation and Mayumi Kaniwa and Misaki Furuie for helping with cell culture. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TY; Methodology: TY; Formal analysis and investigation: TY, MF, YM, TM, SK; Writing—original draft preparation: TY; Writing—review and editing: TY, RN, KY, KW; Supervision: KY, KW.

Corresponding author

Correspondence to Tsuyoshi Yamaguchi.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, T., Fukuda, M., Matsumoto, Y. et al. New high-throughput screening method for Chinese hamster ovary cell lines expressing low reduced monoclonal antibody levels: application of a system controlling the gas phase over cell lysates in miniature bioreactors and facilitating multiple sample setup. Cytotechnology 75, 421–433 (2023). https://doi.org/10.1007/s10616-023-00587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-023-00587-x

Keywords

Navigation