Skip to main content
Log in

Direct and protective effects of single or combined addition of vincristine and ε-viniferin on human HepG2 cellular oxidative stress markers in vitro

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The objective of this study is to examine the direct effects of low doses and high doses of ε-viniferin, a substance known to be an antioxidant, and vincristine sulphate, a chemotherapeutic agent, alone and in combination [ε-viniferin + vincristine] on HepG2 cell strain, as well as evaluate oxidative stress after incubation periods of 3, 6, and 24 h. Direct effect was determined right after the incubation period; however, for protective effect, antioxidant protection response was determined after the treatment for 1 h with 500 μM H2O2, which is an oxidative stressor. For this purpose, superoxide dismutase was determined for enzyme activity, and lipid hydroperoxide (LPO) and reduced glutathione concentrations were studied as indicators of oxidative stress. Results show that low [3.63 µM vincristine + 3.75 µM ε-viniferin] and high [11.25 µM vincristine + 15.8 µM ε-viniferin] doses of combination groups showed similar direct antioxidant effect on LPO levels as protective when compared to the H2O2 control group (p < 0.05). Superoxide dismutase enzyme showed a direct antioxidant effect in low and high dose combination groups. In addition, when the incubation period was increased to 24 h, a protective effect was observed in both dose groups (p < 0.05). Reduced glutathione activities showed a direct effect in the low dose combination group, and a protective effect in both the low and high doses in the 24 h. These results show that combined usage of drugs in HepG2 cell strain possesses a protective effect against exogenically produced oxidative stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aherne SA, O’Brien NM (1999) Protection by the flavonoids myricetin, quercetin, and rutin against hydrogen peroxide-induced DNA damage in Caco-2 and HepG2 cells. Nutr Cancer 34:160–166

    Article  CAS  Google Scholar 

  • Alia M, Ramos S, Mateos R, Bravo L, Goya L (2005) Response of antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in human hepatoma cell line (HepG2). J Biochem Mol Toxicol 19:119–128

    Article  CAS  Google Scholar 

  • Athar M, Back HJ, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL (2007) Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224:274–283

    Article  CAS  Google Scholar 

  • Athar M, Back HJ, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanism. Arch Biochem Biophys 486:95–102

    Article  CAS  Google Scholar 

  • Barjot C, Tournaire M, Castagnino C, Vigor C, Vercauteren J, Rossi JF (2007) Evaluation of antitumor effects of two vine stalk oligomers of resveratrol on a panel of lymphoid and myeloid cell lines: comparison with resveratrol. Life Sci 81:1565–1574

    Article  CAS  Google Scholar 

  • Colin D, Lancon A, Delmas D, Lizard G, Abrossinow J, Kahn E, Jannin B, Latruffe N (2008) Antiproliferative activities of resveratrol and related compounds in human hepatocyte derived HepG2 cells are associated with biochemical with biochemical cell disturbance revealed by fluorescence analyses. Biochimie 90:1674–1684

    Article  CAS  Google Scholar 

  • Conklin KA (2004) Cancer chemotherapy and antioxidants. J Nutr 134:3201–3204

    Google Scholar 

  • Delmas D, Jannin B, Latruffe N (2005) Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49:377–395

    Article  CAS  Google Scholar 

  • Do Amaral CL, Francescato HD, Coimbra TM, Costa RS, Darin JD, Antunes LM, Bianchi Mde L (2008) Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch Toxicol 82:363–370

    Article  CAS  Google Scholar 

  • Farines V, Monje MC, Telo JP, Hnawia E, Sauvain M, Nepveu F (2004) Polyphenols as superoxide dismutase modulators and ligands for estrogen receptors. Anal Chim Acta 513:103–111

    Article  CAS  Google Scholar 

  • Filomeni G, Graziani I, Rotilio G, Ciriolo MR (2007) trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr 2:295–305

    Article  CAS  Google Scholar 

  • Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  CAS  Google Scholar 

  • Fukui M, Choi HJ, Zhu BT (2010) Mechanism for the protective effect of resveratrol against oxidative stres-induced neuronal death. Free Radic Biol Med 49:800–813

    Article  CAS  Google Scholar 

  • Ganesaratnam KB, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22:343–352

    Article  Google Scholar 

  • Guiardelli A, Cattabeni F, Cantoni A (1997) Alternative mechanisms for hydroperoxide-induced DNA single strand breaks. Free Radic Res 26:537–547

    Article  Google Scholar 

  • Guschlbauer M, Klinger S, Burmester M, Horn J, Kulling SE, Breves G (2013) trans-Resveratrol and ε-viniferin decrease glucose absorption in porcine jejunum and ileum in vitro. Comp Biochem Physiol A Mol Integr Physiol 165:313–318

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hanif HA, Murad NA, Ngah WZW, Yusof YAM (2005) Effects of zingiber officinale on superoxide dismutase, glutathione peroxidase, catalase, glutathione and malondialdehyde content in HepG2 cell line. Malays J Biochem Mol Biol 11:36–41

    Google Scholar 

  • Harmsma M, Gromme M, Ummelen M, Dignef W, Tusenius KJ, Ramaekers FCS (2004) Differential effects of Viscum album extract Iscador Qu on cell cycle progression and apoptosis in cancer cells. Int J Oncol 125:1521–1529

    Google Scholar 

  • Jimenez-Del-Rio M, Velez-Pardo C (2012) The bad, the good, and the ugly about oxidative stress. Oxid Med Cell Longev 2012:163913

    Article  Google Scholar 

  • Kardeh S, Ashkani-Esfahani S, Alizadeh AM (2014) Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol 15:150–168

    Article  Google Scholar 

  • Khan N, Afaq F, Mukhtar H (2007) Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis 28:233–239

    Article  CAS  Google Scholar 

  • Kim KV, Suh SJ, Kim JD, Kim SS, Lee İS, Kim JK, Chang GT, Kim DS, Kim CH (2008) Effects on lipid peroxidation and antioxidative enzymes of euonymus alatus in cultured rat hepatocytes. Basic Clin Pharmacol Toxicol 104:60–70

    Article  Google Scholar 

  • Lee YY, Kim HG, Jung HI, Shin YH, Hong SM, Park EH, Sa JH, Lim C (2002) Activities of antioxidant and redox enzymes in human normal hepatic and hepatoma cell lines. Mol Cells 14:305–311

    CAS  Google Scholar 

  • Leonard SS, Xia C, Jiang BH, Stinefelt B, Klandorf H, Harris GK, Shi X (2003) Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 309:1017–1026

    Article  CAS  Google Scholar 

  • Li L, Wang Y, Chen J, Cheng B, Hu J, Zhou Y, Gao X, Gao L, Mei X, Sun M, Zhang Z, Song H (2013) An engineered arginase FC protein inhibits tumor growth in vitro and in vivo. Evid Based Complement Altern Med 2013:1–9. doi:10.1155/2013/423129

  • Liu W, Ying-Hong SHI, Yuan-Fei P, Jia F (2012) Epigenetics of hepatocellular carcinoma: a new horizon. Chin Med J 125:2349–2360

    Google Scholar 

  • Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P (2011) Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 10:171. doi:10.1186/1479-5876-9-171

    Article  Google Scholar 

  • Meneghini R, Martins EL (1993) Hydrogen peroxide and DNA damage. In: Halliwell B, Aruoma OI (eds) DNA and free radicals. Ellis Horwood, New York, pp 83–93

    Google Scholar 

  • Morales AI, Buitrago JM, Santiago JM, Fernandez- Tagarro M, Lopez-Novoa JM, Perez-Barriocanal F (2002) Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid Redox Signal 4:893–898

    Article  CAS  Google Scholar 

  • Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Medina-Bolivar F (2014) Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Plant Physiol Biochem 74:50–69

    Article  CAS  Google Scholar 

  • O’Brien NM, Woods J, Aherne SA, O’Callaghan YC (2000) Cytotoxicity, genotoxicity and oxidative reactions in cell culture model: modulatory effects of phytochemicals. Biochem Soc Trans 28:22–26

    Article  Google Scholar 

  • Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96:9

    Article  Google Scholar 

  • Ozdemir F, Akalın G, Sen M, Onder NI, Işcan A, Kutlu HM, Incesu Z (2014) Towards novel anti-tumor strategies for hepatic cancer: ɛ-viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 cells. OMICS 18:324–334

    Article  Google Scholar 

  • Piver B, Berthou F, Dreano Y, Lucas D (2003) Differential inhibition of human cytochrome P450 enzymes by ε-viniferin, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages. Life Sci 73:1191–1213

    Article  Google Scholar 

  • Porrini M, Riso P, Brusamolino A, Berti C, Guarnieri S, Visioli F (2005) Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br J Nutr 93:93–99

    Article  CAS  Google Scholar 

  • Privat C, Telo JP, Bernardes-Genisson V, Vieira A, Souchard JP, Nepveu F (2002) Antioxidant properties of trans-ε-viniferin as compared to stilbene derivatives in aqueous and nonaqueous media. J Agric Food Chem 50:1213–1217

    Article  CAS  Google Scholar 

  • Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357

    Article  CAS  Google Scholar 

  • Santandreu FM, Valle A, Oliver J, Roca P (2011) Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell Physiol Biochem 28:219–228

    Article  CAS  Google Scholar 

  • Sarrias AG, Gromek S, Niesen D, Seeram NP, Henry GE (2011) Resveratrol oligomers isolated from carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. J Agric Food Chem 59:8632–8638

    Article  Google Scholar 

  • Sekhar KR, Spitz DR, Harris S, Nguyen TT, Meredith MJ, Holt JT, Gius D, Marnett LJ, Summar ML, Freeman ML (2002) Redox-sensitive interaction between KIAA0132 and Nrf2 mediates indomethacin-induced expression of glutamylcysteine synthetase. Free Radic Biol Med 32:650–662

    Article  CAS  Google Scholar 

  • Sun ZJ, Pan CE, Liu HS, Wang GJ (2002) Anti-hepatoma activity of resveratrol in vitro. World J Gastroenterol 8:79–81

    Article  CAS  Google Scholar 

  • Vitaglione P, Morisco F, Caporaso N, Fogliano V (2004) Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr 44:575–586

    Article  CAS  Google Scholar 

  • Wang YC, Yang X, Xing LH, Kong WZ (2013) Effects of SAHA on proliferation and apoptosis of hepatocellular carcinoma cells and hepatitis B virus replication. World J Gastroenterol 19:5159–5164

    Article  Google Scholar 

  • Wu C, Gong F, Pang P, Shen M, Zhu K, Cheng D, Liu Z, Shan H (2013) An RGD-modified MRI-visible polymeric vector for targeted siRNA delivery to hepatocellular carcinoma in nude mice. PLoS One 7:e66416

    Article  Google Scholar 

  • Xu SP, Sun GP, Shen YX, Peng WR, Wang H, Wei W (2007a) Synergistic effect of combining paeonol and cisplatin on apoptotic induction of human hepatoma cell lines. Acta Pharmacol Sin 28:869–878

    Article  CAS  Google Scholar 

  • Xu SP, Sun GP, Shen YX, Wei W, Peng WR, Wang H (2007b) Antiproliferation and apoptosis induction of paeonol in HepG2 cells. World J Gastroenterology 14:250–256

    Article  Google Scholar 

  • Xue YQ, Di JM, Luo Y, Cheng KJ, Wei X, Shi Z (2014) Resveratrol oligomers for the prevention and treatment of cancers, vol 2014. Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity (article ID 765832)

  • Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122

    Article  CAS  Google Scholar 

  • Zghonda N, Yoshida S, Araki M, Kusunoki M, Mliki A, Ghorbel A, Miyazaki H (2011) Greater effectiveness of ε-viniferin in red wine than its monomer resveratrol for inhibiting vascular smooth muscle cell proliferation and migration. Biosci Biotechnol Biochem 75:1259–1267

    Article  CAS  Google Scholar 

  • Zhou G, Chen Y, Liu S, Yao X, Wang Y (2013) In vitro and in vivo hepatoprotective and antioxidant activity of ethanolic extract from Meconopsis integrifolia (Maxim.) Franch. J Ethnopharmacol 148:664–670

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the Anadolu University (Project No. 090306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Özdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarhan, S., Özdemir, F., İncesu, Z. et al. Direct and protective effects of single or combined addition of vincristine and ε-viniferin on human HepG2 cellular oxidative stress markers in vitro. Cytotechnology 68, 1081–1094 (2016). https://doi.org/10.1007/s10616-015-9863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9863-z

Keywords

Navigation