Skip to main content
Log in

Bayesian Quantile Regression Analysis for Bivariate Vector Autoregressive Models with an Application to Financial Time Series

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

To capture the conditional correlations between bivariate financial responses at different quantile levels, this paper considers the Bayesian quantile regression for bivariate vector autoregressive models. With the well known location-scale mixture representation for the asymmetric Laplace distribution, a working likelihood is obtained. By introducing the latent variables, a new Gibbs sampling algorithm is developed for drawing the posterior samples for the parameters and latent variables. The numerical simulation implies that the Gibbs sampling algorithm converges fast and the Bayesian quantile estimators perform well. Finally, a real example is given to discuss the relationship between the Canadian dollar to U.S. dollar exchange rate and long term annual interest rate of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bhattacharya, I., & Ghosal, S. (2021). Bayesian multivariate quantile regression using dependent dirichlet process prior. Journal of Multivariate Analysis, 185, 104763.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E., & Shephard, N. (2001). Non-gaussian ornstein-uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society, Series B, 63(2), 167–241.

    Article  Google Scholar 

  • Cai, Y., Stander, J., & Davies, N. (2012). A new bayesian approach to quantile autoregressive time series model estimation and forecasting. Journal of Time Series Analysis, 33(4), 684–698.

    Article  Google Scholar 

  • Cavicchioli, M. (2016). Statistical analysis of mixture vector autoregressive models. Scandinavian Journal of Statistics, 43(4), 1192–1213.

    Article  Google Scholar 

  • Guo, S., Wang, Y., & Yao, Q. (2016). High-dimensional and banded vector autoregressions. Biometrika, 103(4), 889–903.

    Article  Google Scholar 

  • Iacopini, M., Poon, A., & Zhu, D. (2022). Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP, arXiv:2209.01910.

  • Imai, C., Armstrong, B., Chalabi, Z., Mangtani, P., & Hashizume, M. (2015). Time series regression model for infectious disease and weather. Environmental Research, 142, 319–327.

    Article  Google Scholar 

  • Jung, R. C., & Tremayne, A. R. (2011). Useful models for time series of counts or simply wrong ones? AStA Advances in Statistical Analysis, 95, 59–91.

    Article  Google Scholar 

  • Kalliovirta, L., Meitz, M., & Saikkonen, P. (2016). Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485–498.

    Article  Google Scholar 

  • Koenker, R., & Bassett, G., Jr. (1978). Regression quantiles. Econometrica, 46(1), 33–50.

    Article  Google Scholar 

  • Koenker, R. (2005). Quantiles regression. New York: Cambridge University Press.

    Book  Google Scholar 

  • Koenker, R., & Xiao, Z. (2006). Quantile autoregression. Journal of the American Statistical Association, 101(475), 980–990.

    Article  Google Scholar 

  • Koop, G., Korobilis, D., & Pettenuzzo, D. (2019). Bayesian compressed vector autoregressions. Journal of Econometrics, 210(1), 135–154.

    Article  Google Scholar 

  • Kozumi, H., & Kobayashi, G. (2011). Gibbs sampling methods for bayesian quantile regression. Journal of Statistical Computation and Simulation, 81(11), 1565–1578.

    Article  Google Scholar 

  • Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis. Berlin: Springer.

    Book  Google Scholar 

  • Li, H., Yang, K., & Wang, D. (2019). A threshold stochastic volatility model with explanatory variables. Statistica Neerlandica, 73(1), 118–138.

    Article  Google Scholar 

  • Na, H. S. (2023). Analysis of mutual relationships between investments made by content providers and network operators using the VAR model. Applied Economics, 117(539), 58–71.

    Article  Google Scholar 

  • Pesaran, M. H., & Potter, S. M. (1997). A floor and ceiling model of US output. Journal of Economic Dynamics and Control, 21, 661–695.

    Article  Google Scholar 

  • Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72(3), 821–852.

    Article  Google Scholar 

  • Reich, B. J., Fuentes, M., & Dunson, D. B. (2011). Bayesian spatial quantile regression. Journal of the American Statistical Association, 106(493), 6–20.

    Article  Google Scholar 

  • Reich, B. J., & Smith, L. B. (2013). Bayesian quantile regression for censored data. Biometrics, 69(3), 651–660.

    Article  Google Scholar 

  • Sims, C. A. (1980). Macroeconomics and reality. Economerrica, 48(1), 1–48.

    Article  Google Scholar 

  • Spiegelhalter, D., Best, N., & Linde, C. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583–639.

    Article  Google Scholar 

  • Stock, J. H., & Mark, W. W. (2001). Vector autoregressions. Journal of Economic Perspectives, 15(4), 101–115.

    Article  Google Scholar 

  • Sriram, K., Ramamoorthi, R. V., & Ghosh, P. (2013). Posterior consistency of bayesian quantile regression based on the misspeciifed asymmetric Laplace density. Bayesian Analysis, 8(2), 479–504.

    Article  Google Scholar 

  • Tian, Y., Tang, M., & Tian, M. (2021). Bayesian joint inference for multivariate quantile regression model with \(L_{1/2}\) penalty. Computational Statistics, 36, 2967–2994.

    Article  Google Scholar 

  • Waldmann, E., & Kneib, T. (2015). Bayesian bivariate quantile regression. Statistical Modelling, 15(4), 326–344.

    Article  Google Scholar 

  • Wang, D., Zheng, Y., Lian, H., & Li, G. (2022). High-dimensional vector autoregressive time series modeling via tensor decomposition. Journal of the American Statistical Association, 117, 1338–1356.

    Article  Google Scholar 

  • Wei, W. W. S. (2019). Multivariate Time Series Analysis and Applications. Oxford: Wiley.

    Book  Google Scholar 

  • Yang, K., Ding, X., & Yuan, X. (2022). Bayesian empirical likelihood inference and order shrinkage for autoregressive models. Statistical Papers, 63, 97–121.

    Article  Google Scholar 

  • Yang, K., Yu, X., Zhang, Q., & Dong, X. (2022). On MCMC sampling in self-exciting integer-valued threshold time series models. Computational Statistics and Data Analysis, 169, 107410.

    Article  Google Scholar 

  • Yang, K., Peng, B., & Dong, X. (2023). Bayesian inference for quantile autoregressive model with explanatory variables. Communications in Statistics - Theory and Methods, 52(9), 2946–2965.

    Article  Google Scholar 

  • Yang, M., Luo, S., & DeSantis, S. (2019). Bayesian quantile regression joint models: Inference and dynamic predictions. Statistical Methods in Medical Research, 28(8), 2524–2537.

    Article  Google Scholar 

  • Yu, K., & Moyeed, R. A. (2001). Bayesian quantile regression. Statistics and Probability Letters, 54(4), 437–447.

    Article  Google Scholar 

  • Zhang, J., Wang, J., Tai, Z., & Dong, X. (2023). A study of binomial AR(1) process with an alternative generalized binomial thinning operator. Journal of the Korean Statistical Society, 52, 110–129.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 11901053), Natural Science Foundation of Jilin Province (No. 20220101038JC, 20210101149JC), Postdoctoral Foundation of Jilin Province (No. 2023337), Scientific Research Project of Jilin Provincial Department of Education (No. JJKH20220671KJ, JJKH20230665KJ), Humanities and Social Science Research Project of Jilin Provincial Department of Education (No. JJKH20220649SK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The full conditional distributions

Appendix: The full conditional distributions

The detailed calculations of (3.11) to (3.15) are as follows:

(1) The full conditional density of \( z_{jt} |\varvec{y},\varvec{\beta } \sim \mathcal {G I G}\left( \frac{1}{2},\delta _{jt}, \gamma _{j}\right) \), since

$$\begin{aligned}&\pi (z_{jt} |\varvec{y},\varvec{\beta }) \\ \propto&z_{jt}^{-\frac{1}{2}} \exp \left\{ -\frac{(y_{jt}-a_{j0}-\sum _{i=1}^p\sum _{k=1}^2 a_{jk}^{(i)}y_{k,t-i}-\xi _{j}z_{jt})^{2}}{2 \sigma _{j}^{2} z_{jt}}-z_{jt}\right\} \\ \propto&z_{jt}^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2}\left( \frac{(y_{jt}-a_{j0}-\sum _{i=1}^p\sum _{k=1}^2 a_{jk}^{(i)}y_{k,t-i})^{2}}{\sigma _{j}^{2}} z_{jt}^{-1}+\frac{\xi _{j}^{2}}{\sigma _{j}^{2}} z_{jt}\right) -z_{jt}\right\} \\ \propto&z_{jt}^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2}\left( \frac{(y_{jt}-a_{j0}-\sum _{i=1}^p\sum _{k=1}^2 a_{jk}^{(i)}y_{k,t-i})^{2}}{\sigma _{j}^{2}} z_{jt}^{-1}+ \left( \frac{\xi _{j}^{2}}{\sigma _{j}^{2}}+2\right) z_{jt}\right) \right\} \\ \propto&z_{jt}^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2}\left( \delta _{jt}^{2} z_{jt}^{-1}+ \gamma _{j}^{2} z_{jt}\right) \right\} , \end{aligned}$$
(A.1)

where \(\delta _{jt}^{2} =(y_{jt}-a_{j0}-\sum _{i=1}^p\sum _{k=1}^2 a_{jk}^{(i)}y_{k,t-i})^{2}/\sigma _{j}^{2}\), and \(\gamma _{j}^{2} =2+{\xi _{j}^{2}}/{\sigma _{j}^{2}}\).

(2) The full conditional density of \( \varvec{\beta }_{0} |\varvec{y}, \varvec{Z}_{1},\varvec{Z}_{2}, \varvec{\beta }_{11},\varvec{\beta }_{12},\cdots ,\varvec{\beta }_{p1},\varvec{\beta }_{p2} \sim \mathcal {MVN} (\hat{\varvec{\beta }}_{0}, \hat{\varvec{A}}_{00})\), since

$$\begin{aligned}&\pi \left( \varvec{\beta }_{0} |\varvec{y},\varvec{Z}_{1},\varvec{Z}_{2}, \varvec{\beta }_{11},\varvec{\beta }_{12},\cdots ,\varvec{\beta }_{p1},\varvec{\beta }_{p2} \right) \\ \propto&\exp \left\{ -\frac{1}{2}\left( \sum _{t=1}^{n} \left( \left( \tilde{\varvec{y}}_{t0}-\varvec{\beta }_{0}\right) ^{\textsf {T}} \varvec{\Sigma }_{t}^{-1} \left( \tilde{\varvec{y}}_{t0}-\varvec{\beta }_{0}\right) \right) +\left( \varvec{\beta }_{0}-\varvec{C}_{0 0}\right) ^{\textsf {T}} \varvec{\Sigma }_{00}^{-1}\left( \varvec{\beta }_{0}-\varvec{C}_{00}\right) \right) \right\} \\ \propto&\exp \left\{ -\frac{1}{2}\left( -2\left( \sum _{t=1}^{n}\tilde{\varvec{y}}_{t0}^{\textsf {T}} \varvec{\Sigma }_{t}^{-1}+\varvec{C}_{00}^{\textsf {T}} \varvec{\Sigma }_{00}^{-1}\right) \varvec{\beta }_{0} +\varvec{\beta }_{0}^{\textsf {T}}\left( \sum _{t=1}^{n}\varvec{\Sigma }_{t}^{-1}+\varvec{\Sigma }_{00}^{-1}\right) \varvec{\beta }_{0}\right) \right\} \\ \propto&\exp \left\{ -\frac{1}{2}\left( \varvec{\beta }_{0}-\hat{\varvec{\beta }}_{0} \right) ^{\textsf {T}} \varvec{A}_{00}^{-1}\left( \varvec{\beta }_{0}-\hat{\varvec{\beta }}_{0}\right) \right\} , \end{aligned}$$
(A.2)

where \( \hat{\varvec{A}}_{00}^{-1} = \sum _{t=1}^{n}\varvec{\Sigma }_{t}^{-1}+\varvec{\Sigma }_{00}^{-1}\), \( \hat{\varvec{\beta }}_{0} =\left( \left( \sum _{t=1}^{n}\tilde{\varvec{y}}_{t0}^{\top } \varvec{\Sigma }_{t}^{-1}+\varvec{C}_{00}^{\top } \varvec{\Sigma }_{00}^{-1}\right) \hat{\varvec{A}}_{00}\right) ^{\top } \), and \( \tilde{\varvec{y}}_{t0}=\varvec{y}_{t}-\sum _{i=1}^p \sum _{j=1}^2\) \({\varvec{X}_{j,t-i}\varvec{\beta }_{ij}}-\varvec{\xi }\varvec{z}_{t}. \)

(3) The full conditional density of \(\varvec{\beta }_{ij} |\varvec{Z}_{1},\varvec{Z}_{2}, \varvec{y}, \varvec{\beta }_{-ij}\sim \mathcal {MVN} (\hat{\varvec{\beta }}_{ij}, \hat{\varvec{A}}_{ij})\), since

$$\begin{aligned}&\pi \left( \varvec{\beta }_{ij} |\varvec{Z}_{1},\varvec{Z}_{2}, \varvec{y},\varvec{\beta }_{-ij} \right) \\ \propto&\exp \left\{ -\frac{1}{2}\left( \sum _{t=1}^{n} \left( \left( \tilde{\varvec{y}}_{tij}-{X_{j,t-i}\varvec{\beta }_{ij}}\right) ^{\textsf {T}} \varvec{\Sigma }_{t}^{-1} \left( \tilde{\varvec{y}}_{tij}-{X_{j,t-i}\varvec{\beta }_{ij}}\right) \right) +\left( \varvec{\beta }_{ij}-\varvec{C}_{i1}\right) ^{\textsf {T}} \varvec{\Sigma }_{ij}^{-1}\left( \varvec{\beta }_{ij}-\varvec{C}_{ij}\right) \right) \right\} \\ \propto&\exp \left\{ -\frac{1}{2}\left( -2\left( \sum _{t=1}^{n}\tilde{\varvec{y}}_{tij}^{\textsf {T}} \varvec{\Sigma }_{t}^{-1}X_{j,t-i}+\varvec{C}_{ij}^{\textsf {T}} \varvec{\Sigma }_{ij}^{-1}\right) \varvec{\beta }_{ij} +\varvec{\beta }_{ij}^{\textsf {T}}\left( \sum _{t=1}^{n}X_{j,t-i}^{\textsf {T}}\varvec{\Sigma }_{t}^{-1}X_{j,t-i}+\varvec{\Sigma }_{ij}^{-1}\right) \varvec{\beta }_{ij}\right) \right\} \\ \propto&\exp \left\{ -\frac{1}{2}\left( \varvec{\beta }_{ij}-\hat{\varvec{\beta }}_{ij} \right) ^{\textsf {T}} \varvec{A}_{ij}^{-1}\left( \varvec{\beta }_{ij}-\hat{\varvec{\beta }}_{ij}\right) \right\} , \end{aligned}$$
(A.3)

where

\(\hat{\varvec{A}}_{ij}^{-1} = \sum _{t=1}^{n}X_{j,t-i}^{\top }\varvec{\Sigma }_{t}^{-1}X_{j,t-i}+\varvec{\Sigma }_{ij}^{-1}\), \( \hat{\varvec{\beta }}_{ij} =\left( \left( \sum _{t=1}^{n}\tilde{\varvec{y}}_{tij}^{\top } \varvec{\Sigma }_{t}^{-1}X_{j,t-i}+\varvec{C}_{ij}^{\top } \varvec{\Sigma }_{ij}^{-1}\right) \hat{\varvec{A}}_{ij}\right) ^{\top }, \) and \( \tilde{\varvec{y}}_{tij}=\varvec{y}_{t}-\varvec{\beta }_{0}- \sum _{k=1}^p\sum _{s=1}^2{X_{s,t-k}\varvec{\beta }_{ks}+X_{j,t-i}\varvec{\beta }_{ij}}-\varvec{\xi } \varvec{z}_{t}. \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Zhao, L., Hu, Q. et al. Bayesian Quantile Regression Analysis for Bivariate Vector Autoregressive Models with an Application to Financial Time Series. Comput Econ (2023). https://doi.org/10.1007/s10614-023-10498-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-023-10498-w

Keywords

Navigation