Skip to main content
Log in

DEA-Based Piecewise Linear Discriminant Analysis

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Nonlinear classification models have better classification performance than the linear classifiers. However, for many nonlinear classification problems, piecewise-linear discriminant functions can approximate nonlinear discriminant functions. In this study, we combine the algorithm of data envelopment analysis (DEA) with classification information, and propose a novel DEA-based classifier to construct a piecewise-linear discriminant function, in this classifier, the nonnegative conditions of DEA model are loosed and class information is added; Finally, experiments are performed using a UCI data set to demonstrate the accuracy and efficiency of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson, T. W. (1984). An introduction to multivariate statistical analysis. New York: Wiley.

    Google Scholar 

  • Bajgier, S. M., & Hill, A. V. (1982). An experimental comparison of statistical and linear programming approaches to the discriminant problem. Decision Sciences, 13, 604–618.

    Article  Google Scholar 

  • Bal, H., & Orkcu, H. H. (2007). Data envelopment analysis approach to two-group classification problem and experimental comparison with some classification models. Hacettepe Journal of Mathematics and Statistics, 36(2), 169–180.

    Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Bennett & Mangasarian. (1992). http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29.

  • Bo, Z., Benhui, C., & Jinglu, H. U. (2014). Quasi-linear support vector machine for nonlinear classification. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E, 97(A7), 1587–1594.

    Google Scholar 

  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data and Knowledge Discovery, 2(2), 121–167.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  • Chen, X., Yang, J., Zhang, D., & Liang, J. (2013). Complete large margin linear discriminant analysis using mathematical programming approach. Pattern Recognition, 46, 1579–1594.

    Article  Google Scholar 

  • Cohen, S., Robach, L., & Maimon, O. (2007). Decision-tree in stance-space decomposition with groped gain-ratio. Information Sciences, 177, 3557–3573.

    Article  Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.

  • Fred, N., & Glover, F. (1981). A linear programming approach to the discriminant problem. Decision Sciences, 12, 68–74.

    Article  Google Scholar 

  • Fred, N., & Glover, F. (1986). Evaluating alternative linear programming models to solve the two-group discriminant problem. Decision Sciences, 17, 589–585.

    Article  Google Scholar 

  • Glen, J. J. (2005). Mathematical programming models for piecewise-linear discriminant analysis. Journal of the Operational Research Society, 56, 331–341.

    Article  Google Scholar 

  • Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques. San Francisco: Morgan Kaufman Publishers Inc.

    Google Scholar 

  • Lam, K. F., Choo, E. U., & Moy, J. W. (1996). Minimizing deviations from the group mean: A new linear programming approach for The two-group classification problem. European Journal of Operational Research, 88, 358–367.

    Article  Google Scholar 

  • Lam, K. F., & Moy, J. W. (2002). Combining discriminant methods in solving classification problems in two-group discriminant analysis. European Journal of Operational Research, 138, 294–301.

    Article  Google Scholar 

  • Lu, H., Rudy, S., & Liu, H. (1996). Effect data mining using neural networks. IEEE Transaction on Knowledge and Data Engineering, 8(6), 957–961.

    Article  Google Scholar 

  • Masoumzadeh, A., Toloo, M., & Amirteimoori, A. (2016). Performance, assessment in production systems without explicit inputs: An application to basketball players. IMA Journal of Management Mathematics, 27, 143–156.

    Article  Google Scholar 

  • Peng, L. Z., Yang, B., Cheng, Y., & Abraham, A. (2009). Data gravitation based classification. Information Sciences, 179, 809–819.

    Article  Google Scholar 

  • Toloo, M. (2013). The most efficient unit without explicit inputs: An extended MILP-DEA model. Measurement, 46, 3628–3634.

    Article  Google Scholar 

  • Toloo, M., & Jalili, R. (2016). LU decomposition in DEA with an application to hospitals. Computational Economics, 47(3), 473–488.

    Article  Google Scholar 

  • Toloo, M., & Kresta, A. (2014). Finding the best asset financing alternative: A DEA-WEO approach. Measurement, 55, 288–294.

    Article  Google Scholar 

  • Toloo, M., Masoumzadeh, A., & Barat, M. (2015). Finding an initial basic feasible solution for DEA models with an application on bank industry. Computational Economics, 45(2), 323–326.

    Article  Google Scholar 

  • Toloo, M., Saen, R. F., & Azadi, M. (2015). Obviating some of the theoretical barriers of data envelopment analysis discriminant analysis (DEA-DA): An application in predicting cluster membership of customers. Journal of the Operational Research Society, 66, 674–683.

    Article  Google Scholar 

  • Troutt, M. D., Rai, A., & Zhang, A. (1996). The potential use of DEA for credit applicant acceptance systems. Computers and Operations Research, 23(4), 405–408.

    Article  Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory. Berlin: Springer.

    Book  Google Scholar 

  • Wei, Q., Chang, T.-S., & Han, S. (2014). Quantile-DEA classifiers with interval data. Annals of Operations Research, 217, 535–563.

    Article  Google Scholar 

  • Yan, H., & Wei, Q. (2011). Data envelopment analysis classification machine. Information Sciences, 181, 5029–5041.

    Article  Google Scholar 

  • Yi, W. G., Lu, M. Y., & Liu, Z. (2011). Multi-valued attribute and multi-labeled data decision tree algorithm. International Journal of Machine Learning and Cybernetics, 2(2), 67–74.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from National Social Science Fund of China (14BJY010), National Natural Science Foundation of China (41201327), science and technology research and development programs of Hebei Province (12276104D-3) and Research Foundation of Medicine in Hebei University (2012A3003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Ab., Ji, Y. & Qiao, Y. DEA-Based Piecewise Linear Discriminant Analysis. Comput Econ 51, 809–820 (2018). https://doi.org/10.1007/s10614-016-9642-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-016-9642-8

Keywords

Navigation